mongodb: Add Hybrid and Full-Text Search Retrievers, release 0.2.0 (#25057)

## Description

This pull-request extends the existing vector search strategies of
MongoDBAtlasVectorSearch to include Hybrid (Reciprocal Rank Fusion) and
Full-text via new Retrievers.

There is a small breaking change in the form of the `prefilter` kwarg to
search. For this, and because we have now added a great deal of
features, including programmatic Index creation/deletion since 0.1.0, we
plan to bump the version to 0.2.0.

### Checklist
* Unit tests have been extended
* formatting has been applied
* One mypy error remains which will either go away in CI or be
simplified.

---------

Signed-off-by: Casey Clements <casey.clements@mongodb.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Casey Clements
2024-08-07 16:10:29 -04:00
committed by GitHub
parent f337408b0f
commit 6e9a8b188f
22 changed files with 1749 additions and 508 deletions

View File

@@ -1,3 +1,5 @@
"""Search Index Commands"""
import logging
from time import monotonic, sleep
from typing import Any, Callable, Dict, List, Optional
@@ -8,8 +10,6 @@ from pymongo.operations import SearchIndexModel
logger = logging.getLogger(__file__)
_DELAY = 0.5 # Interval between checks for index operations
def _search_index_error_message() -> str:
return (
@@ -25,19 +25,24 @@ def _vector_search_index_definition(
dimensions: int,
path: str,
similarity: str,
filters: Optional[List[Dict[str, str]]],
filters: Optional[List[str]] = None,
**kwargs: Any,
) -> Dict[str, Any]:
return {
"fields": [
{
"numDimensions": dimensions,
"path": path,
"similarity": similarity,
"type": "vector",
},
*(filters or []),
]
}
# https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-type/
fields = [
{
"numDimensions": dimensions,
"path": path,
"similarity": similarity,
"type": "vector",
},
]
if filters:
for field in filters:
fields.append({"type": "filter", "path": field})
definition = {"fields": fields}
definition.update(kwargs)
return definition
def create_vector_search_index(
@@ -46,9 +51,10 @@ def create_vector_search_index(
dimensions: int,
path: str,
similarity: str,
filters: Optional[List[Dict[str, str]]] = None,
filters: Optional[List[str]] = None,
*,
wait_until_complete: Optional[float] = None,
**kwargs: Any,
) -> None:
"""Experimental Utility function to create a vector search index
@@ -58,9 +64,10 @@ def create_vector_search_index(
dimensions (int): Number of dimensions in embedding
path (str): field with vector embedding
similarity (str): The similarity score used for the index
filters (List[Dict[str, str]]): additional filters for index definition.
filters (List[str]): Fields/paths to index to allow filtering in $vectorSearch
wait_until_complete (Optional[float]): If provided, number of seconds to wait
until search index is ready.
kwargs: Keyword arguments supplying any additional options to SearchIndexModel.
"""
logger.info("Creating Search Index %s on %s", index_name, collection.name)
@@ -72,6 +79,7 @@ def create_vector_search_index(
path=path,
similarity=similarity,
filters=filters,
**kwargs,
),
name=index_name,
type="vectorSearch",
@@ -83,7 +91,7 @@ def create_vector_search_index(
if wait_until_complete:
_wait_for_predicate(
predicate=lambda: _is_index_ready(collection, index_name),
err=f"Index {index_name} creation did not finish in {wait_until_complete}!",
err=f"{index_name=} did not complete in {wait_until_complete}!",
timeout=wait_until_complete,
)
logger.info(result)
@@ -127,9 +135,10 @@ def update_vector_search_index(
dimensions: int,
path: str,
similarity: str,
filters: List[Dict[str, str]],
filters: Optional[List[str]] = None,
*,
wait_until_complete: Optional[float] = None,
**kwargs: Any,
) -> None:
"""Update a search index.
@@ -138,12 +147,13 @@ def update_vector_search_index(
Args:
collection (Collection): MongoDB Collection
index_name (str): Name of Index
dimensions (int): Number of dimensions in embedding.
path (str): field with vector embedding.
dimensions (int): Number of dimensions in embedding
path (str): field with vector embedding
similarity (str): The similarity score used for the index.
filters (List[Dict[str, str]]): additional filters for index definition.
filters (List[str]): Fields/paths to index to allow filtering in $vectorSearch
wait_until_complete (Optional[float]): If provided, number of seconds to wait
until search index is ready.
kwargs: Keyword arguments supplying any additional options to SearchIndexModel.
"""
logger.info(
@@ -157,6 +167,7 @@ def update_vector_search_index(
path=path,
similarity=similarity,
filters=filters,
**kwargs,
),
)
except OperationFailure as e:
@@ -201,7 +212,7 @@ def _wait_for_predicate(
Args:
predicate (Callable[, bool]): A function that returns a boolean value
err (str): Error message to raise if nothing occurs
timeout (float, optional): wait time for predicate. Defaults to TIMEOUT.
timeout (float, optional): Wait time for predicate. Defaults to TIMEOUT.
interval (float, optional): Interval to check predicate. Defaults to DELAY.
Raises:
@@ -212,3 +223,48 @@ def _wait_for_predicate(
if monotonic() - start > timeout:
raise TimeoutError(err)
sleep(interval)
def create_fulltext_search_index(
collection: Collection,
index_name: str,
field: str,
*,
wait_until_complete: Optional[float] = None,
**kwargs: Any,
) -> None:
"""Experimental Utility function to create an Atlas Search index
Args:
collection (Collection): MongoDB Collection
index_name (str): Name of Index
field (str): Field to index
wait_until_complete (Optional[float]): If provided, number of seconds to wait
until search index is ready
kwargs: Keyword arguments supplying any additional options to SearchIndexModel.
"""
logger.info("Creating Search Index %s on %s", index_name, collection.name)
definition = {
"mappings": {"dynamic": False, "fields": {field: [{"type": "string"}]}}
}
try:
result = collection.create_search_index(
SearchIndexModel(
definition=definition,
name=index_name,
type="search",
**kwargs,
)
)
except OperationFailure as e:
raise OperationFailure(_search_index_error_message()) from e
if wait_until_complete:
_wait_for_predicate(
predicate=lambda: _is_index_ready(collection, index_name),
err=f"{index_name=} did not complete in {wait_until_complete}!",
timeout=wait_until_complete,
)
logger.info(result)