mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-24 16:37:46 +00:00
huggingface: Add IPEX models support (#29179)
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
d6a7aaa97d
commit
6f95db81b7
@ -9,6 +9,14 @@ from langchain_core.language_models.llms import BaseLLM
|
|||||||
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||||||
from pydantic import ConfigDict, model_validator
|
from pydantic import ConfigDict, model_validator
|
||||||
|
|
||||||
|
from ..utils.import_utils import (
|
||||||
|
IMPORT_ERROR,
|
||||||
|
is_ipex_available,
|
||||||
|
is_openvino_available,
|
||||||
|
is_optimum_intel_available,
|
||||||
|
is_optimum_intel_version,
|
||||||
|
)
|
||||||
|
|
||||||
DEFAULT_MODEL_ID = "gpt2"
|
DEFAULT_MODEL_ID = "gpt2"
|
||||||
DEFAULT_TASK = "text-generation"
|
DEFAULT_TASK = "text-generation"
|
||||||
VALID_TASKS = (
|
VALID_TASKS = (
|
||||||
@ -18,6 +26,8 @@ VALID_TASKS = (
|
|||||||
"translation",
|
"translation",
|
||||||
)
|
)
|
||||||
DEFAULT_BATCH_SIZE = 4
|
DEFAULT_BATCH_SIZE = 4
|
||||||
|
_MIN_OPTIMUM_VERSION = "1.21"
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -126,70 +136,70 @@ class HuggingFacePipeline(BaseLLM):
|
|||||||
_model_kwargs["device_map"] = device_map
|
_model_kwargs["device_map"] = device_map
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
||||||
|
|
||||||
try:
|
if backend in {"openvino", "ipex"}:
|
||||||
if task == "text-generation":
|
if task not in VALID_TASKS:
|
||||||
if backend == "openvino":
|
|
||||||
try:
|
|
||||||
from optimum.intel.openvino import ( # type: ignore[import]
|
|
||||||
OVModelForCausalLM,
|
|
||||||
)
|
|
||||||
|
|
||||||
except ImportError:
|
|
||||||
raise ValueError(
|
|
||||||
"Could not import optimum-intel python package. "
|
|
||||||
"Please install it with: "
|
|
||||||
"pip install 'optimum[openvino,nncf]' "
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
# use local model
|
|
||||||
model = OVModelForCausalLM.from_pretrained(
|
|
||||||
model_id, **_model_kwargs
|
|
||||||
)
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
# use remote model
|
|
||||||
model = OVModelForCausalLM.from_pretrained(
|
|
||||||
model_id, export=True, **_model_kwargs
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
model_id, **_model_kwargs
|
|
||||||
)
|
|
||||||
elif task in ("text2text-generation", "summarization", "translation"):
|
|
||||||
if backend == "openvino":
|
|
||||||
try:
|
|
||||||
from optimum.intel.openvino import OVModelForSeq2SeqLM
|
|
||||||
|
|
||||||
except ImportError:
|
|
||||||
raise ValueError(
|
|
||||||
"Could not import optimum-intel python package. "
|
|
||||||
"Please install it with: "
|
|
||||||
"pip install 'optimum[openvino,nncf]' "
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
# use local model
|
|
||||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
|
||||||
model_id, **_model_kwargs
|
|
||||||
)
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
# use remote model
|
|
||||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
|
||||||
model_id, export=True, **_model_kwargs
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
||||||
model_id, **_model_kwargs
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Got invalid task {task}, "
|
f"Got invalid task {task}, "
|
||||||
f"currently only {VALID_TASKS} are supported"
|
f"currently only {VALID_TASKS} are supported"
|
||||||
)
|
)
|
||||||
except ImportError as e:
|
|
||||||
raise ValueError(
|
err_msg = f'Backend: {backend} {IMPORT_ERROR.format(f"optimum[{backend}]")}'
|
||||||
f"Could not load the {task} model due to missing dependencies."
|
if not is_optimum_intel_available():
|
||||||
) from e
|
raise ImportError(err_msg)
|
||||||
|
|
||||||
|
# TODO: upgrade _MIN_OPTIMUM_VERSION to 1.22 after release
|
||||||
|
min_optimum_version = (
|
||||||
|
"1.22"
|
||||||
|
if backend == "ipex" and task != "text-generation"
|
||||||
|
else _MIN_OPTIMUM_VERSION
|
||||||
|
)
|
||||||
|
if is_optimum_intel_version("<", min_optimum_version):
|
||||||
|
raise ImportError(
|
||||||
|
f"Backend: {backend} requires optimum-intel>="
|
||||||
|
f"{min_optimum_version}. You can install it with pip: "
|
||||||
|
"`pip install --upgrade --upgrade-strategy eager "
|
||||||
|
f"`optimum[{backend}]`."
|
||||||
|
)
|
||||||
|
|
||||||
|
if backend == "openvino":
|
||||||
|
if not is_openvino_available():
|
||||||
|
raise ImportError(err_msg)
|
||||||
|
|
||||||
|
from optimum.intel import ( # type: ignore[import]
|
||||||
|
OVModelForCausalLM,
|
||||||
|
OVModelForSeq2SeqLM,
|
||||||
|
)
|
||||||
|
|
||||||
|
model_cls = (
|
||||||
|
OVModelForCausalLM
|
||||||
|
if task == "text-generation"
|
||||||
|
else OVModelForSeq2SeqLM
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if not is_ipex_available():
|
||||||
|
raise ImportError(err_msg)
|
||||||
|
|
||||||
|
if task == "text-generation":
|
||||||
|
from optimum.intel import (
|
||||||
|
IPEXModelForCausalLM, # type: ignore[import]
|
||||||
|
)
|
||||||
|
|
||||||
|
model_cls = IPEXModelForCausalLM
|
||||||
|
else:
|
||||||
|
from optimum.intel import (
|
||||||
|
IPEXModelForSeq2SeqLM, # type: ignore[import]
|
||||||
|
)
|
||||||
|
|
||||||
|
model_cls = IPEXModelForSeq2SeqLM
|
||||||
|
|
||||||
|
else:
|
||||||
|
model_cls = (
|
||||||
|
AutoModelForCausalLM
|
||||||
|
if task == "text-generation"
|
||||||
|
else AutoModelForSeq2SeqLM
|
||||||
|
)
|
||||||
|
|
||||||
|
model = model_cls.from_pretrained(model_id, **_model_kwargs)
|
||||||
|
|
||||||
if tokenizer.pad_token is None:
|
if tokenizer.pad_token is None:
|
||||||
tokenizer.pad_token_id = model.config.eos_token_id
|
tokenizer.pad_token_id = model.config.eos_token_id
|
||||||
|
@ -0,0 +1,116 @@
|
|||||||
|
import importlib.metadata
|
||||||
|
import importlib.util
|
||||||
|
import operator as op
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
|
STR_OPERATION_TO_FUNC = {
|
||||||
|
">": op.gt,
|
||||||
|
">=": op.ge,
|
||||||
|
"==": op.eq,
|
||||||
|
"!=": op.ne,
|
||||||
|
"<=": op.le,
|
||||||
|
"<": op.lt,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
_optimum_available = importlib.util.find_spec("optimum") is not None
|
||||||
|
_optimum_version = "N/A"
|
||||||
|
if _optimum_available:
|
||||||
|
try:
|
||||||
|
_optimum_version = importlib.metadata.version("optimum")
|
||||||
|
except importlib.metadata.PackageNotFoundError:
|
||||||
|
_optimum_available = False
|
||||||
|
|
||||||
|
|
||||||
|
_optimum_intel_available = (
|
||||||
|
_optimum_available and importlib.util.find_spec("optimum.intel") is not None
|
||||||
|
)
|
||||||
|
_optimum_intel_version = "N/A"
|
||||||
|
if _optimum_intel_available:
|
||||||
|
try:
|
||||||
|
_optimum_intel_version = importlib.metadata.version("optimum-intel")
|
||||||
|
except importlib.metadata.PackageNotFoundError:
|
||||||
|
_optimum_intel_available = False
|
||||||
|
|
||||||
|
|
||||||
|
_ipex_available = importlib.util.find_spec("intel_extension_for_pytorch") is not None
|
||||||
|
|
||||||
|
_openvino_available = importlib.util.find_spec("openvino") is not None
|
||||||
|
|
||||||
|
|
||||||
|
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
|
||||||
|
def compare_versions(
|
||||||
|
library_or_version: Union[str, version.Version],
|
||||||
|
operation: str,
|
||||||
|
requirement_version: str,
|
||||||
|
) -> bool:
|
||||||
|
"""
|
||||||
|
Compare a library version to some requirement using a given operation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
library_or_version (`str` or `packaging.version.Version`):
|
||||||
|
A library name or a version to check.
|
||||||
|
operation (`str`):
|
||||||
|
A string representation of an operator, such as `">"` or `"<="`.
|
||||||
|
requirement_version (`str`):
|
||||||
|
The version to compare the library version against
|
||||||
|
"""
|
||||||
|
if operation not in STR_OPERATION_TO_FUNC.keys():
|
||||||
|
raise ValueError(
|
||||||
|
f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}"
|
||||||
|
f", received {operation}"
|
||||||
|
)
|
||||||
|
if isinstance(library_or_version, str):
|
||||||
|
library_or_version = version.parse(
|
||||||
|
importlib.metadata.version(library_or_version)
|
||||||
|
)
|
||||||
|
return STR_OPERATION_TO_FUNC[operation](
|
||||||
|
library_or_version, version.parse(requirement_version)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def is_optimum_available() -> bool:
|
||||||
|
return _optimum_available
|
||||||
|
|
||||||
|
|
||||||
|
def is_optimum_intel_available() -> bool:
|
||||||
|
return _optimum_intel_available
|
||||||
|
|
||||||
|
|
||||||
|
def is_ipex_available() -> bool:
|
||||||
|
return _ipex_available
|
||||||
|
|
||||||
|
|
||||||
|
def is_openvino_available() -> bool:
|
||||||
|
return _openvino_available
|
||||||
|
|
||||||
|
|
||||||
|
def is_optimum_version(operation: str, reference_version: str) -> bool:
|
||||||
|
"""
|
||||||
|
Compare the current Optimum version to a given reference with an operation.
|
||||||
|
"""
|
||||||
|
if not _optimum_version:
|
||||||
|
return False
|
||||||
|
return compare_versions(
|
||||||
|
version.parse(_optimum_version), operation, reference_version
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def is_optimum_intel_version(operation: str, reference_version: str) -> bool:
|
||||||
|
"""
|
||||||
|
Compare the current Optimum Intel version to a given reference with an operation.
|
||||||
|
"""
|
||||||
|
if not _optimum_intel_version:
|
||||||
|
return False
|
||||||
|
return compare_versions(
|
||||||
|
version.parse(_optimum_intel_version), operation, reference_version
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
IMPORT_ERROR = """
|
||||||
|
requires the {0} library but it was not found in your environment.
|
||||||
|
You can install it with pip: `pip install {0}`.
|
||||||
|
Please note that you may need to restart your runtime after installation.
|
||||||
|
"""
|
Loading…
Reference in New Issue
Block a user