mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 06:53:16 +00:00
community[patch]: Performant filter columns option for Hanavector (#21971)
**Description:** Backwards compatible extension of the initialisation interface of HanaDB to allow the user to specify specific_metadata_columns that are used for metadata storage of selected keys which yields increased filter performance. Any not-mentioned metadata remains in the general metadata column as part of a JSON string. Furthermore switched to executemany for batch inserts into HanaDB. **Issue:** N/A **Dependencies:** no new dependencies added **Twitter handle:** @sapopensource --------- Co-authored-by: Martin Kolb <martin.kolb@sap.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -65,6 +65,7 @@ test_setup = ConfigData()
|
||||
|
||||
|
||||
def generateSchemaName(cursor): # type: ignore[no-untyped-def]
|
||||
# return "Langchain"
|
||||
cursor.execute(
|
||||
"SELECT REPLACE(CURRENT_UTCDATE, '-', '') || '_' || BINTOHEX(SYSUUID) FROM "
|
||||
"DUMMY;"
|
||||
@@ -85,6 +86,7 @@ def setup_module(module): # type: ignore[no-untyped-def]
|
||||
password=os.environ.get("HANA_DB_PASSWORD"),
|
||||
autocommit=True,
|
||||
sslValidateCertificate=False,
|
||||
# encrypt=True
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
@@ -100,6 +102,7 @@ def setup_module(module): # type: ignore[no-untyped-def]
|
||||
|
||||
|
||||
def teardown_module(module): # type: ignore[no-untyped-def]
|
||||
# return
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
sql_str = f"DROP SCHEMA {test_setup.schema_name} CASCADE"
|
||||
@@ -112,7 +115,7 @@ def teardown_module(module): # type: ignore[no-untyped-def]
|
||||
|
||||
@pytest.fixture
|
||||
def texts() -> List[str]:
|
||||
return ["foo", "bar", "baz"]
|
||||
return ["foo", "bar", "baz", "bak", "cat"]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -121,6 +124,8 @@ def metadatas() -> List[str]:
|
||||
{"start": 0, "end": 100, "quality": "good", "ready": True}, # type: ignore[list-item]
|
||||
{"start": 100, "end": 200, "quality": "bad", "ready": False}, # type: ignore[list-item]
|
||||
{"start": 200, "end": 300, "quality": "ugly", "ready": True}, # type: ignore[list-item]
|
||||
{"start": 200, "quality": "ugly", "ready": True, "Owner": "Steve"}, # type: ignore[list-item]
|
||||
{"start": 300, "quality": "ugly", "Owner": "Steve"}, # type: ignore[list-item]
|
||||
]
|
||||
|
||||
|
||||
@@ -640,14 +645,14 @@ def test_hanavector_delete_with_filter(texts: List[str], metadatas: List[dict])
|
||||
table_name=table_name,
|
||||
)
|
||||
|
||||
search_result = vectorDB.similarity_search(texts[0], 3)
|
||||
assert len(search_result) == 3
|
||||
search_result = vectorDB.similarity_search(texts[0], 10)
|
||||
assert len(search_result) == 5
|
||||
|
||||
# Delete one of the three entries
|
||||
assert vectorDB.delete(filter={"start": 100, "end": 200})
|
||||
|
||||
search_result = vectorDB.similarity_search(texts[0], 3)
|
||||
assert len(search_result) == 2
|
||||
search_result = vectorDB.similarity_search(texts[0], 10)
|
||||
assert len(search_result) == 4
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
@@ -667,14 +672,14 @@ async def test_hanavector_delete_with_filter_async(
|
||||
table_name=table_name,
|
||||
)
|
||||
|
||||
search_result = vectorDB.similarity_search(texts[0], 3)
|
||||
assert len(search_result) == 3
|
||||
search_result = vectorDB.similarity_search(texts[0], 10)
|
||||
assert len(search_result) == 5
|
||||
|
||||
# Delete one of the three entries
|
||||
assert await vectorDB.adelete(filter={"start": 100, "end": 200})
|
||||
|
||||
search_result = vectorDB.similarity_search(texts[0], 3)
|
||||
assert len(search_result) == 2
|
||||
search_result = vectorDB.similarity_search(texts[0], 10)
|
||||
assert len(search_result) == 4
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
@@ -861,7 +866,7 @@ def test_hanavector_filter_prepared_statement_params(
|
||||
sql_str = f"SELECT * FROM {table_name} WHERE JSON_VALUE(VEC_META, '$.ready') = ?"
|
||||
cur.execute(sql_str, (query_value))
|
||||
rows = cur.fetchall()
|
||||
assert len(rows) == 2
|
||||
assert len(rows) == 3
|
||||
|
||||
# query_value = False
|
||||
query_value = "false" # type: ignore[assignment]
|
||||
@@ -1094,3 +1099,336 @@ def test_pgvector_with_with_metadata_filters_5(
|
||||
ids = [doc.metadata["id"] for doc in docs]
|
||||
assert len(ids) == len(expected_ids), test_filter
|
||||
assert set(ids).issubset(expected_ids), test_filter
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
def test_preexisting_specific_columns_for_metadata_fill(
|
||||
texts: List[str], metadatas: List[dict]
|
||||
) -> None:
|
||||
table_name = "PREEXISTING_FILTER_COLUMNS"
|
||||
# drop_table(test_setup.conn, table_name)
|
||||
|
||||
sql_str = (
|
||||
f'CREATE TABLE "{table_name}" ('
|
||||
f'"VEC_TEXT" NCLOB, '
|
||||
f'"VEC_META" NCLOB, '
|
||||
f'"VEC_VECTOR" REAL_VECTOR, '
|
||||
f'"Owner" NVARCHAR(100), '
|
||||
f'"quality" NVARCHAR(100));'
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
finally:
|
||||
cur.close()
|
||||
|
||||
vectorDB = HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["Owner", "quality"],
|
||||
)
|
||||
|
||||
c = 0
|
||||
try:
|
||||
sql_str = f'SELECT COUNT(*) FROM {table_name} WHERE "quality"=' f"'ugly'"
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
if cur.has_result_set():
|
||||
rows = cur.fetchall()
|
||||
c = rows[0][0]
|
||||
finally:
|
||||
cur.close()
|
||||
assert c == 3
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"quality": "good"})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"start": 100})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "bar"
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 100, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 0
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 0, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
def test_preexisting_specific_columns_for_metadata_via_array(
|
||||
texts: List[str], metadatas: List[dict]
|
||||
) -> None:
|
||||
table_name = "PREEXISTING_FILTER_COLUMNS_VIA_ARRAY"
|
||||
# drop_table(test_setup.conn, table_name)
|
||||
|
||||
sql_str = (
|
||||
f'CREATE TABLE "{table_name}" ('
|
||||
f'"VEC_TEXT" NCLOB, '
|
||||
f'"VEC_META" NCLOB, '
|
||||
f'"VEC_VECTOR" REAL_VECTOR, '
|
||||
f'"Owner" NVARCHAR(100), '
|
||||
f'"quality" NVARCHAR(100));'
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
finally:
|
||||
cur.close()
|
||||
|
||||
vectorDB = HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["quality"],
|
||||
)
|
||||
|
||||
c = 0
|
||||
try:
|
||||
sql_str = f'SELECT COUNT(*) FROM {table_name} WHERE "quality"=' f"'ugly'"
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
if cur.has_result_set():
|
||||
rows = cur.fetchall()
|
||||
c = rows[0][0]
|
||||
finally:
|
||||
cur.close()
|
||||
assert c == 3
|
||||
|
||||
try:
|
||||
sql_str = f'SELECT COUNT(*) FROM {table_name} WHERE "Owner"=' f"'Steve'"
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
if cur.has_result_set():
|
||||
rows = cur.fetchall()
|
||||
c = rows[0][0]
|
||||
finally:
|
||||
cur.close()
|
||||
assert c == 0
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"quality": "good"})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"start": 100})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "bar"
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 100, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 0
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 0, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
def test_preexisting_specific_columns_for_metadata_multiple_columns(
|
||||
texts: List[str], metadatas: List[dict]
|
||||
) -> None:
|
||||
table_name = "PREEXISTING_FILTER_MULTIPLE_COLUMNS"
|
||||
# drop_table(test_setup.conn, table_name)
|
||||
|
||||
sql_str = (
|
||||
f'CREATE TABLE "{table_name}" ('
|
||||
f'"VEC_TEXT" NCLOB, '
|
||||
f'"VEC_META" NCLOB, '
|
||||
f'"VEC_VECTOR" REAL_VECTOR, '
|
||||
f'"quality" NVARCHAR(100), '
|
||||
f'"start" INTEGER);'
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
finally:
|
||||
cur.close()
|
||||
|
||||
vectorDB = HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["quality", "start"],
|
||||
)
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"quality": "good"})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"start": 100})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "bar"
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 100, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 0
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 0, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
def test_preexisting_specific_columns_for_metadata_empty_columns(
|
||||
texts: List[str], metadatas: List[dict]
|
||||
) -> None:
|
||||
table_name = "PREEXISTING_FILTER_MULTIPLE_COLUMNS_EMPTY"
|
||||
# drop_table(test_setup.conn, table_name)
|
||||
|
||||
sql_str = (
|
||||
f'CREATE TABLE "{table_name}" ('
|
||||
f'"VEC_TEXT" NCLOB, '
|
||||
f'"VEC_META" NCLOB, '
|
||||
f'"VEC_VECTOR" REAL_VECTOR, '
|
||||
f'"quality" NVARCHAR(100), '
|
||||
f'"ready" BOOLEAN, '
|
||||
f'"start" INTEGER);'
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
finally:
|
||||
cur.close()
|
||||
|
||||
vectorDB = HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["quality", "ready", "start"],
|
||||
)
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"quality": "good"})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"start": 100})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "bar"
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 100, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 0
|
||||
|
||||
docs = vectorDB.similarity_search(
|
||||
"hello", k=5, filter={"start": 0, "quality": "good"}
|
||||
)
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"ready": True})
|
||||
assert len(docs) == 3
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
def test_preexisting_specific_columns_for_metadata_wrong_type_or_non_existing(
|
||||
texts: List[str], metadatas: List[dict]
|
||||
) -> None:
|
||||
table_name = "PREEXISTING_FILTER_COLUMNS_WRONG_TYPE"
|
||||
# drop_table(test_setup.conn, table_name)
|
||||
|
||||
sql_str = (
|
||||
f'CREATE TABLE "{table_name}" ('
|
||||
f'"VEC_TEXT" NCLOB, '
|
||||
f'"VEC_META" NCLOB, '
|
||||
f'"VEC_VECTOR" REAL_VECTOR, '
|
||||
f'"quality" INTEGER); '
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
finally:
|
||||
cur.close()
|
||||
|
||||
# Check if table is created
|
||||
exception_occured = False
|
||||
try:
|
||||
HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["quality"],
|
||||
)
|
||||
exception_occured = False
|
||||
except dbapi.Error: # Nothing we should do here, hdbcli will throw an error
|
||||
exception_occured = True
|
||||
assert exception_occured # Check if table is created
|
||||
|
||||
exception_occured = False
|
||||
try:
|
||||
HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["NonExistingColumn"],
|
||||
)
|
||||
exception_occured = False
|
||||
except AttributeError: # Nothing we should do here, hdbcli will throw an error
|
||||
exception_occured = True
|
||||
assert exception_occured
|
||||
|
||||
|
||||
@pytest.mark.skipif(not hanadb_installed, reason="hanadb not installed")
|
||||
def test_preexisting_specific_columns_for_returned_metadata_completeness(
|
||||
texts: List[str], metadatas: List[dict]
|
||||
) -> None:
|
||||
table_name = "PREEXISTING_FILTER_COLUMNS_METADATA_COMPLETENESS"
|
||||
# drop_table(test_setup.conn, table_name)
|
||||
|
||||
sql_str = (
|
||||
f'CREATE TABLE "{table_name}" ('
|
||||
f'"VEC_TEXT" NCLOB, '
|
||||
f'"VEC_META" NCLOB, '
|
||||
f'"VEC_VECTOR" REAL_VECTOR, '
|
||||
f'"quality" NVARCHAR(100), '
|
||||
f'"NonExisting" NVARCHAR(100), '
|
||||
f'"ready" BOOLEAN, '
|
||||
f'"start" INTEGER);'
|
||||
)
|
||||
try:
|
||||
cur = test_setup.conn.cursor()
|
||||
cur.execute(sql_str)
|
||||
finally:
|
||||
cur.close()
|
||||
|
||||
vectorDB = HanaDB.from_texts(
|
||||
connection=test_setup.conn,
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
embedding=embedding,
|
||||
table_name=table_name,
|
||||
specific_metadata_columns=["quality", "ready", "start", "NonExisting"],
|
||||
)
|
||||
|
||||
docs = vectorDB.similarity_search("hello", k=5, filter={"quality": "good"})
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "foo"
|
||||
assert docs[0].metadata["end"] == 100
|
||||
assert docs[0].metadata["start"] == 0
|
||||
assert docs[0].metadata["quality"] == "good"
|
||||
assert docs[0].metadata["ready"]
|
||||
assert "NonExisting" not in docs[0].metadata.keys()
|
||||
|
Reference in New Issue
Block a user