diff --git a/docs/docs/modules/memory/types/vectorstore_retriever_memory.mdx b/docs/docs/modules/memory/types/vectorstore_retriever_memory.mdx index 607f9180bb5..643d814fe1a 100644 --- a/docs/docs/modules/memory/types/vectorstore_retriever_memory.mdx +++ b/docs/docs/modules/memory/types/vectorstore_retriever_memory.mdx @@ -52,8 +52,6 @@ memory.save_context({"input": "I don't the Celtics"}, {"output": "ok"}) # ```python -# Notice the first result returned is the memory pertaining to tax help, which the language model deems more semantically relevant -# to a 1099 than the other documents, despite them both containing numbers. print(memory.load_memory_variables({"prompt": "what sport should i watch?"})["history"]) ``` @@ -88,7 +86,6 @@ PROMPT = PromptTemplate( conversation_with_summary = ConversationChain( llm=llm, prompt=PROMPT, - # We set a very low max_token_limit for the purposes of testing. memory=memory, verbose=True )