mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-27 08:58:48 +00:00
docs: Concepts
(#4734)
# glossary.md renamed as concepts.md and moved under the Getting Started small PR. `Concepts` looks right to the point. It is moved under Getting Started (typical place). Previously it was lost in the Additional Resources section. ## Who can review? @hwchase17
This commit is contained in:
parent
8de81d34a1
commit
70fd7cda14
@ -1,54 +1,44 @@
|
||||
# Glossary
|
||||
# Concepts
|
||||
|
||||
This is a collection of terminology commonly used when developing LLM applications.
|
||||
These are concepts and terminology commonly used when developing LLM applications.
|
||||
It contains reference to external papers or sources where the concept was first introduced,
|
||||
as well as to places in LangChain where the concept is used.
|
||||
|
||||
## Chain of Thought Prompting
|
||||
## Chain of Thought
|
||||
|
||||
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
|
||||
`Chain of Thought (CoT)` is a prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
|
||||
A less formal way to induce this behavior is to include “Let’s think step-by-step” in the prompt.
|
||||
|
||||
Resources:
|
||||
|
||||
- [Chain-of-Thought Paper](https://arxiv.org/pdf/2201.11903.pdf)
|
||||
- [Step-by-Step Paper](https://arxiv.org/abs/2112.00114)
|
||||
|
||||
## Action Plan Generation
|
||||
|
||||
A prompt usage that uses a language model to generate actions to take.
|
||||
`Action Plan Generation` is a prompting technique that uses a language model to generate actions to take.
|
||||
The results of these actions can then be fed back into the language model to generate a subsequent action.
|
||||
|
||||
Resources:
|
||||
|
||||
- [WebGPT Paper](https://arxiv.org/pdf/2112.09332.pdf)
|
||||
- [SayCan Paper](https://say-can.github.io/assets/palm_saycan.pdf)
|
||||
|
||||
## ReAct Prompting
|
||||
## ReAct
|
||||
|
||||
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
|
||||
`ReAct` is a prompting technique that combines Chain-of-Thought prompting with action plan generation.
|
||||
This induces the to model to think about what action to take, then take it.
|
||||
|
||||
Resources:
|
||||
|
||||
- [Paper](https://arxiv.org/pdf/2210.03629.pdf)
|
||||
- [LangChain Example](modules/agents/agents/examples/react.ipynb)
|
||||
- [LangChain Example](../modules/agents/agents/examples/react.ipynb)
|
||||
|
||||
## Self-ask
|
||||
|
||||
A prompting method that builds on top of chain-of-thought prompting.
|
||||
`Self-ask` is a prompting method that builds on top of chain-of-thought prompting.
|
||||
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
|
||||
|
||||
Resources:
|
||||
|
||||
- [Paper](https://ofir.io/self-ask.pdf)
|
||||
- [LangChain Example](modules/agents/agents/examples/self_ask_with_search.ipynb)
|
||||
- [LangChain Example](../modules/agents/agents/examples/self_ask_with_search.ipynb)
|
||||
|
||||
## Prompt Chaining
|
||||
|
||||
Combining multiple LLM calls together, with the output of one-step being the input to the next.
|
||||
|
||||
Resources:
|
||||
`Prompt Chaining` is combining multiple LLM calls, with the output of one-step being the input to the next.
|
||||
|
||||
- [PromptChainer Paper](https://arxiv.org/pdf/2203.06566.pdf)
|
||||
- [Language Model Cascades](https://arxiv.org/abs/2207.10342)
|
||||
@ -57,34 +47,29 @@ Resources:
|
||||
|
||||
## Memetic Proxy
|
||||
|
||||
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
|
||||
|
||||
Resources:
|
||||
`Memetic Proxy` is encouraging the LLM
|
||||
to respond in a certain way framing the discussion in a context that the model knows of and that
|
||||
will result in that type of response.
|
||||
For example, as a conversation between a student and a teacher.
|
||||
|
||||
- [Paper](https://arxiv.org/pdf/2102.07350.pdf)
|
||||
|
||||
## Self Consistency
|
||||
|
||||
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
|
||||
`Self Consistency` is a decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
|
||||
Is most effective when combined with Chain-of-thought prompting.
|
||||
|
||||
Resources:
|
||||
|
||||
- [Paper](https://arxiv.org/pdf/2203.11171.pdf)
|
||||
|
||||
## Inception
|
||||
|
||||
Also called “First Person Instruction”.
|
||||
Encouraging the model to think a certain way by including the start of the model’s response in the prompt.
|
||||
|
||||
Resources:
|
||||
`Inception` is also called `First Person Instruction`.
|
||||
It is encouraging the model to think a certain way by including the start of the model’s response in the prompt.
|
||||
|
||||
- [Example](https://twitter.com/goodside/status/1583262455207460865?s=20&t=8Hz7XBnK1OF8siQrxxCIGQ)
|
||||
|
||||
## MemPrompt
|
||||
|
||||
MemPrompt maintains a memory of errors and user feedback, and uses them to prevent repetition of mistakes.
|
||||
|
||||
Resources:
|
||||
`MemPrompt` maintains a memory of errors and user feedback, and uses them to prevent repetition of mistakes.
|
||||
|
||||
- [Paper](https://memprompt.com/)
|
@ -17,17 +17,22 @@ How to get started using LangChain to create an Language Model application.
|
||||
|
||||
- `Getting Started tutorial <./getting_started/getting_started.html>`_
|
||||
|
||||
Concepts and terminology.
|
||||
|
||||
- `Concepts and terminology <./getting_started/concepts.html>`_
|
||||
|
||||
Tutorials created by community experts and presented on YouTube.
|
||||
|
||||
- `Tutorials <./getting_started/tutorials.html>`_
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:maxdepth: 2
|
||||
:caption: Getting Started
|
||||
:name: getting_started
|
||||
:hidden:
|
||||
|
||||
getting_started/getting_started.md
|
||||
getting_started/concepts.md
|
||||
getting_started/tutorials.md
|
||||
|
||||
|
||||
@ -156,8 +161,6 @@ Additional collection of resources we think may be useful as you develop your ap
|
||||
|
||||
- `LangChainHub <https://github.com/hwchase17/langchain-hub>`_: The LangChainHub is a place to share and explore other prompts, chains, and agents.
|
||||
|
||||
- `Glossary <./glossary.html>`_: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!
|
||||
|
||||
- `Gallery <./gallery.html>`_: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.
|
||||
|
||||
- `Deployments <./deployments.html>`_: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.
|
||||
|
Loading…
Reference in New Issue
Block a user