Add new beta StructuredPrompt (#19080)

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
This commit is contained in:
Nuno Campos
2024-03-14 10:40:34 -07:00
committed by GitHub
parent 0ae39ab30e
commit 751fb7de20
3 changed files with 217 additions and 0 deletions

View File

@@ -0,0 +1,78 @@
from functools import partial
from inspect import isclass
from typing import Any, Dict, Type, Union, cast
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.prompts.structured import StructuredPrompt
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables.base import Runnable, RunnableLambda
from tests.unit_tests.fake.chat_model import FakeListChatModel
def _fake_runnable(
schema: Union[Dict, Type[BaseModel]], _: Any
) -> Union[BaseModel, Dict]:
if isclass(schema) and issubclass(schema, BaseModel):
return schema(name="yo", value=42)
else:
params = cast(Dict, schema)["parameters"]
return {k: 1 for k, v in params.items()}
class FakeStructuredChatModel(FakeListChatModel):
"""Fake ChatModel for testing purposes."""
def with_structured_output(self, schema: Union[Dict, Type[BaseModel]]) -> Runnable:
return RunnableLambda(partial(_fake_runnable, schema))
@property
def _llm_type(self) -> str:
return "fake-messages-list-chat-model"
def test_structured_prompt_pydantic() -> None:
class OutputSchema(BaseModel):
name: str
value: int
prompt = StructuredPrompt.from_messages_and_schema(
[
("human", "I'm very structured, how about you?"),
],
OutputSchema,
)
model = FakeStructuredChatModel(responses=[])
chain = prompt | model
assert chain.invoke({"hello": "there"}) == OutputSchema(name="yo", value=42)
def test_structured_prompt_dict() -> None:
prompt = StructuredPrompt.from_messages_and_schema(
[
("human", "I'm very structured, how about you?"),
],
{
"name": "yo",
"description": "a structured output",
"parameters": {
"name": {"type": "string"},
"value": {"type": "integer"},
},
},
)
model = FakeStructuredChatModel(responses=[])
chain = prompt | model
assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 1}
assert loads(dumps(prompt)) == prompt
chain = loads(dumps(prompt)) | model
assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 1}