community: Vectara summarization (#14970)

Description: Adding Summarization to Vectara, to reflect it provides not
only vector-store type functionality but also can return a summary.
Also added:
MMR capability (in the Vectara platform side)

Updated templates

Updated documentation and IPYNB examples

Tag maintainer: @baskaryan
Twitter handle: @ofermend

---------

Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
This commit is contained in:
Erick Friis
2023-12-20 11:51:33 -08:00
committed by GitHub
parent cf6951a0c9
commit 75ba22793f
11 changed files with 1033 additions and 732 deletions

View File

@@ -1,7 +1,6 @@
import os
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.vectorstores import Vectara
from langchain_core.output_parsers import StrOutputParser
@@ -15,35 +14,37 @@ if os.environ.get("VECTARA_CORPUS_ID", None) is None:
if os.environ.get("VECTARA_API_KEY", None) is None:
raise Exception("Missing `VECTARA_API_KEY` environment variable.")
# If you want to ingest data then use this code.
# Note that no document chunking is needed, as this is
# done efficiently in the Vectara backend.
# Note: you will need to install beautifulsoup4 to ingest
# from langchain.document_loaders import WebBaseLoader
# from langchain.embeddings import OpenAIEmbeddings
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
# docs = loader.load()
# vec_store = Vectara.from_documents(docs, embedding=OpenAIEmbeddings())
# retriever = vec_store.as_retriever()
# Setup the Vectara retriever with your Corpus ID and API Key
# Otherwise, if data is already loaded into Vectara then use this code:
# note you can customize the retriever behavior by passing additional arguments:
# - k: number of results to return (defaults to 5)
# - lambda_val: the
# [lexical matching](https://docs.vectara.com/docs/api-reference/search-apis/lexical-matching)
# factor for hybrid search (defaults to 0.025)
# - filter: a [filter](https://docs.vectara.com/docs/common-use-cases/filtering-by-metadata/filter-overview)
# to apply to the results (default None)
# - n_sentence_context: number of sentences to include before/after the actual matching
# segment when returning results. This defaults to 2.
# - mmr_config: can be used to specify MMR mode in the query.
# - is_enabled: True or False
# - mmr_k: number of results to use for MMR reranking
# - diversity_bias: 0 = no diversity, 1 = full diversity. This is the lambda
# parameter in the MMR formula and is in the range 0...1
vectara_retriever = Vectara().as_retriever()
# Setup the Multi-query retriever
llm = ChatOpenAI(temperature=0)
retriever = MultiQueryRetriever.from_llm(retriever=Vectara().as_retriever(), llm=llm)
retriever = MultiQueryRetriever.from_llm(retriever=vectara_retriever, llm=llm)
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# RAG
# Setup RAG pipeline with multi-query.
# We extract the summary from the RAG output, which is the last document
# (if summary is enabled)
# Note that if you want to extract the citation information, you can use res[:-1]]
model = ChatOpenAI()
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| (lambda res: res[-1])
| StrOutputParser()
)

View File

@@ -1,7 +1,5 @@
import os
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.vectorstores import Vectara
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
@@ -14,29 +12,30 @@ if os.environ.get("VECTARA_CORPUS_ID", None) is None:
if os.environ.get("VECTARA_API_KEY", None) is None:
raise Exception("Missing `VECTARA_API_KEY` environment variable.")
# If you want to ingest data then use this code.
# Note that no document chunking is needed, as this is
# done efficiently in the Vectara backend.
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
# docs = loader.load()
# vec_store = Vectara.from_document(docs)
# retriever = vec_store.as_retriever()
# Otherwise, if data is already loaded into Vectara then use this code:
# Setup the Vectara retriever with your Corpus ID and API Key
# note you can customize the retriever behavior by passing additional arguments:
# - k: number of results to return (defaults to 5)
# - lambda_val: the
# [lexical matching](https://docs.vectara.com/docs/api-reference/search-apis/lexical-matching)
# factor for hybrid search (defaults to 0.025)
# - filter: a [filter](https://docs.vectara.com/docs/common-use-cases/filtering-by-metadata/filter-overview)
# to apply to the results (default None)
# - n_sentence_context: number of sentences to include before/after the actual matching
# segment when returning results. This defaults to 2.
# - mmr_config: can be used to specify MMR mode in the query.
# - is_enabled: True or False
# - mmr_k: number of results to use for MMR reranking
# - diversity_bias: 0 = no diversity, 1 = full diversity. This is the lambda
# parameter in the MMR formula and is in the range 0...1
retriever = Vectara().as_retriever()
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# RAG
model = ChatOpenAI()
# RAG pipeline: we extract the summary from the RAG output, which is the last document
# (if summary is enabled)
# Note that if you want to extract the citation information, you can use res[:-1]]
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| (lambda res: res[-1])
| StrOutputParser()
)