mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-18 09:01:03 +00:00
core[patch], langchain[patch], templates: move openai functions parsers to core (#18060)

This commit is contained in:
parent
96bff0ed5d
commit
767523f364
220
libs/core/langchain_core/output_parsers/openai_functions.py
Normal file
220
libs/core/langchain_core/output_parsers/openai_functions.py
Normal file
@ -0,0 +1,220 @@
|
||||
import copy
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional, Type, Union
|
||||
|
||||
import jsonpatch # type: ignore[import]
|
||||
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.output_parsers import (
|
||||
BaseCumulativeTransformOutputParser,
|
||||
BaseGenerationOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.json import parse_partial_json
|
||||
from langchain_core.outputs import ChatGeneration, Generation
|
||||
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||||
|
||||
|
||||
class OutputFunctionsParser(BaseGenerationOutputParser[Any]):
|
||||
"""Parse an output that is one of sets of values."""
|
||||
|
||||
args_only: bool = True
|
||||
"""Whether to only return the arguments to the function call."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
func_call = copy.deepcopy(message.additional_kwargs["function_call"])
|
||||
except KeyError as exc:
|
||||
raise OutputParserException(f"Could not parse function call: {exc}")
|
||||
|
||||
if self.args_only:
|
||||
return func_call["arguments"]
|
||||
return func_call
|
||||
|
||||
|
||||
class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
|
||||
"""Parse an output as the Json object."""
|
||||
|
||||
strict: bool = False
|
||||
"""Whether to allow non-JSON-compliant strings.
|
||||
|
||||
See: https://docs.python.org/3/library/json.html#encoders-and-decoders
|
||||
|
||||
Useful when the parsed output may include unicode characters or new lines.
|
||||
"""
|
||||
|
||||
args_only: bool = True
|
||||
"""Whether to only return the arguments to the function call."""
|
||||
|
||||
@property
|
||||
def _type(self) -> str:
|
||||
return "json_functions"
|
||||
|
||||
def _diff(self, prev: Optional[Any], next: Any) -> Any:
|
||||
return jsonpatch.make_patch(prev, next).patch
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
if len(result) != 1:
|
||||
raise OutputParserException(
|
||||
f"Expected exactly one result, but got {len(result)}"
|
||||
)
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
function_call = message.additional_kwargs["function_call"]
|
||||
except KeyError as exc:
|
||||
if partial:
|
||||
return None
|
||||
else:
|
||||
raise OutputParserException(f"Could not parse function call: {exc}")
|
||||
try:
|
||||
if partial:
|
||||
try:
|
||||
if self.args_only:
|
||||
return parse_partial_json(
|
||||
function_call["arguments"], strict=self.strict
|
||||
)
|
||||
else:
|
||||
return {
|
||||
**function_call,
|
||||
"arguments": parse_partial_json(
|
||||
function_call["arguments"], strict=self.strict
|
||||
),
|
||||
}
|
||||
except json.JSONDecodeError:
|
||||
return None
|
||||
else:
|
||||
if self.args_only:
|
||||
try:
|
||||
return json.loads(
|
||||
function_call["arguments"], strict=self.strict
|
||||
)
|
||||
except (json.JSONDecodeError, TypeError) as exc:
|
||||
raise OutputParserException(
|
||||
f"Could not parse function call data: {exc}"
|
||||
)
|
||||
else:
|
||||
try:
|
||||
return {
|
||||
**function_call,
|
||||
"arguments": json.loads(
|
||||
function_call["arguments"], strict=self.strict
|
||||
),
|
||||
}
|
||||
except (json.JSONDecodeError, TypeError) as exc:
|
||||
raise OutputParserException(
|
||||
f"Could not parse function call data: {exc}"
|
||||
)
|
||||
except KeyError:
|
||||
return None
|
||||
|
||||
# This method would be called by the default implementation of `parse_result`
|
||||
# but we're overriding that method so it's not needed.
|
||||
def parse(self, text: str) -> Any:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser):
|
||||
"""Parse an output as the element of the Json object."""
|
||||
|
||||
key_name: str
|
||||
"""The name of the key to return."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
res = super().parse_result(result, partial=partial)
|
||||
if partial and res is None:
|
||||
return None
|
||||
return res.get(self.key_name) if partial else res[self.key_name]
|
||||
|
||||
|
||||
class PydanticOutputFunctionsParser(OutputFunctionsParser):
|
||||
"""Parse an output as a pydantic object.
|
||||
|
||||
This parser is used to parse the output of a ChatModel that uses
|
||||
OpenAI function format to invoke functions.
|
||||
|
||||
The parser extracts the function call invocation and matches
|
||||
them to the pydantic schema provided.
|
||||
|
||||
An exception will be raised if the function call does not match
|
||||
the provided schema.
|
||||
|
||||
Example:
|
||||
|
||||
... code-block:: python
|
||||
|
||||
message = AIMessage(
|
||||
content="This is a test message",
|
||||
additional_kwargs={
|
||||
"function_call": {
|
||||
"name": "cookie",
|
||||
"arguments": json.dumps({"name": "value", "age": 10}),
|
||||
}
|
||||
},
|
||||
)
|
||||
chat_generation = ChatGeneration(message=message)
|
||||
|
||||
class Cookie(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
class Dog(BaseModel):
|
||||
species: str
|
||||
|
||||
# Full output
|
||||
parser = PydanticOutputFunctionsParser(
|
||||
pydantic_schema={"cookie": Cookie, "dog": Dog}
|
||||
)
|
||||
result = parser.parse_result([chat_generation])
|
||||
"""
|
||||
|
||||
pydantic_schema: Union[Type[BaseModel], Dict[str, Type[BaseModel]]]
|
||||
"""The pydantic schema to parse the output with.
|
||||
|
||||
If multiple schemas are provided, then the function name will be used to
|
||||
determine which schema to use.
|
||||
"""
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_schema(cls, values: Dict) -> Dict:
|
||||
schema = values["pydantic_schema"]
|
||||
if "args_only" not in values:
|
||||
values["args_only"] = isinstance(schema, type) and issubclass(
|
||||
schema, BaseModel
|
||||
)
|
||||
elif values["args_only"] and isinstance(schema, Dict):
|
||||
raise ValueError(
|
||||
"If multiple pydantic schemas are provided then args_only should be"
|
||||
" False."
|
||||
)
|
||||
return values
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
_result = super().parse_result(result)
|
||||
if self.args_only:
|
||||
pydantic_args = self.pydantic_schema.parse_raw(_result) # type: ignore
|
||||
else:
|
||||
fn_name = _result["name"]
|
||||
_args = _result["arguments"]
|
||||
pydantic_args = self.pydantic_schema[fn_name].parse_raw(_args) # type: ignore # noqa: E501
|
||||
return pydantic_args
|
||||
|
||||
|
||||
class PydanticAttrOutputFunctionsParser(PydanticOutputFunctionsParser):
|
||||
"""Parse an output as an attribute of a pydantic object."""
|
||||
|
||||
attr_name: str
|
||||
"""The name of the attribute to return."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
result = super().parse_result(result)
|
||||
return getattr(result, self.attr_name)
|
@ -2,15 +2,15 @@ import json
|
||||
from typing import Any, Dict
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
||||
from langchain_core.outputs import ChatGeneration
|
||||
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
JsonOutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain_core.outputs import ChatGeneration
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
|
||||
def test_json_output_function_parser() -> None:
|
@ -14,6 +14,9 @@ from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.output_parsers import (
|
||||
BaseLLMOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.prompts import BasePromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.utils.function_calling import (
|
||||
@ -27,9 +30,6 @@ from langchain.chains.structured_output.base import (
|
||||
create_structured_output_runnable,
|
||||
get_openai_output_parser,
|
||||
)
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"get_openai_output_parser",
|
||||
|
@ -2,14 +2,12 @@ from typing import Iterator, List
|
||||
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from langchain_core.output_parsers.openai_functions import PydanticOutputFunctionsParser
|
||||
from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.openai_functions.utils import get_llm_kwargs
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
|
||||
|
||||
class FactWithEvidence(BaseModel):
|
||||
|
@ -1,6 +1,10 @@
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
JsonKeyOutputFunctionsParser,
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.prompts import BasePromptTemplate, ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
@ -11,10 +15,6 @@ from langchain.chains.openai_functions.utils import (
|
||||
_resolve_schema_references,
|
||||
get_llm_kwargs,
|
||||
)
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
JsonKeyOutputFunctionsParser,
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
)
|
||||
|
||||
|
||||
def _get_extraction_function(entity_schema: dict) -> dict:
|
||||
|
@ -10,6 +10,7 @@ from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.utilities.openapi import OpenAPISpec
|
||||
from langchain_core.callbacks import CallbackManagerForChainRun
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
from langchain_core.prompts import BasePromptTemplate, ChatPromptTemplate
|
||||
from langchain_core.utils.input import get_colored_text
|
||||
from requests import Response
|
||||
@ -17,7 +18,6 @@ from requests import Response
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.sequential import SequentialChain
|
||||
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
from langchain.tools import APIOperation
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -3,16 +3,16 @@ from typing import Any, List, Optional, Type, Union
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from langchain_core.output_parsers import BaseLLMOutputParser
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
OutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.openai_functions.utils import get_llm_kwargs
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
OutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
|
||||
|
||||
class AnswerWithSources(BaseModel):
|
||||
|
@ -1,15 +1,15 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
JsonOutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.openai_functions.utils import _convert_schema, get_llm_kwargs
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
JsonOutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
|
||||
|
||||
def _get_tagging_function(schema: dict) -> dict:
|
||||
|
@ -6,6 +6,11 @@ from langchain_core.output_parsers import (
|
||||
BaseOutputParser,
|
||||
JsonOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
JsonOutputFunctionsParser,
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.prompts import BasePromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import Runnable
|
||||
@ -19,11 +24,6 @@ from langchain.output_parsers import (
|
||||
PydanticOutputParser,
|
||||
PydanticToolsParser,
|
||||
)
|
||||
from langchain.output_parsers.openai_functions import (
|
||||
JsonOutputFunctionsParser,
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
|
||||
|
||||
def create_openai_fn_runnable(
|
||||
|
@ -1,219 +1,13 @@
|
||||
import copy
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional, Type, Union
|
||||
|
||||
import jsonpatch
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.output_parsers import (
|
||||
BaseCumulativeTransformOutputParser,
|
||||
BaseGenerationOutputParser,
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
JsonKeyOutputFunctionsParser,
|
||||
JsonOutputFunctionsParser,
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
PydanticOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.output_parsers.json import parse_partial_json
|
||||
from langchain_core.outputs import ChatGeneration, Generation
|
||||
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||||
|
||||
|
||||
class OutputFunctionsParser(BaseGenerationOutputParser[Any]):
|
||||
"""Parse an output that is one of sets of values."""
|
||||
|
||||
args_only: bool = True
|
||||
"""Whether to only return the arguments to the function call."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
func_call = copy.deepcopy(message.additional_kwargs["function_call"])
|
||||
except KeyError as exc:
|
||||
raise OutputParserException(f"Could not parse function call: {exc}")
|
||||
|
||||
if self.args_only:
|
||||
return func_call["arguments"]
|
||||
return func_call
|
||||
|
||||
|
||||
class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
|
||||
"""Parse an output as the Json object."""
|
||||
|
||||
strict: bool = False
|
||||
"""Whether to allow non-JSON-compliant strings.
|
||||
|
||||
See: https://docs.python.org/3/library/json.html#encoders-and-decoders
|
||||
|
||||
Useful when the parsed output may include unicode characters or new lines.
|
||||
"""
|
||||
|
||||
args_only: bool = True
|
||||
"""Whether to only return the arguments to the function call."""
|
||||
|
||||
@property
|
||||
def _type(self) -> str:
|
||||
return "json_functions"
|
||||
|
||||
def _diff(self, prev: Optional[Any], next: Any) -> Any:
|
||||
return jsonpatch.make_patch(prev, next).patch
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
if len(result) != 1:
|
||||
raise OutputParserException(
|
||||
f"Expected exactly one result, but got {len(result)}"
|
||||
)
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
raise OutputParserException(
|
||||
"This output parser can only be used with a chat generation."
|
||||
)
|
||||
message = generation.message
|
||||
try:
|
||||
function_call = message.additional_kwargs["function_call"]
|
||||
except KeyError as exc:
|
||||
if partial:
|
||||
return None
|
||||
else:
|
||||
raise OutputParserException(f"Could not parse function call: {exc}")
|
||||
try:
|
||||
if partial:
|
||||
try:
|
||||
if self.args_only:
|
||||
return parse_partial_json(
|
||||
function_call["arguments"], strict=self.strict
|
||||
)
|
||||
else:
|
||||
return {
|
||||
**function_call,
|
||||
"arguments": parse_partial_json(
|
||||
function_call["arguments"], strict=self.strict
|
||||
),
|
||||
}
|
||||
except json.JSONDecodeError:
|
||||
return None
|
||||
else:
|
||||
if self.args_only:
|
||||
try:
|
||||
return json.loads(
|
||||
function_call["arguments"], strict=self.strict
|
||||
)
|
||||
except (json.JSONDecodeError, TypeError) as exc:
|
||||
raise OutputParserException(
|
||||
f"Could not parse function call data: {exc}"
|
||||
)
|
||||
else:
|
||||
try:
|
||||
return {
|
||||
**function_call,
|
||||
"arguments": json.loads(
|
||||
function_call["arguments"], strict=self.strict
|
||||
),
|
||||
}
|
||||
except (json.JSONDecodeError, TypeError) as exc:
|
||||
raise OutputParserException(
|
||||
f"Could not parse function call data: {exc}"
|
||||
)
|
||||
except KeyError:
|
||||
return None
|
||||
|
||||
# This method would be called by the default implementation of `parse_result`
|
||||
# but we're overriding that method so it's not needed.
|
||||
def parse(self, text: str) -> Any:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser):
|
||||
"""Parse an output as the element of the Json object."""
|
||||
|
||||
key_name: str
|
||||
"""The name of the key to return."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
res = super().parse_result(result, partial=partial)
|
||||
if partial and res is None:
|
||||
return None
|
||||
return res.get(self.key_name) if partial else res[self.key_name]
|
||||
|
||||
|
||||
class PydanticOutputFunctionsParser(OutputFunctionsParser):
|
||||
"""Parse an output as a pydantic object.
|
||||
|
||||
This parser is used to parse the output of a ChatModel that uses
|
||||
OpenAI function format to invoke functions.
|
||||
|
||||
The parser extracts the function call invocation and matches
|
||||
them to the pydantic schema provided.
|
||||
|
||||
An exception will be raised if the function call does not match
|
||||
the provided schema.
|
||||
|
||||
Example:
|
||||
|
||||
... code-block:: python
|
||||
|
||||
message = AIMessage(
|
||||
content="This is a test message",
|
||||
additional_kwargs={
|
||||
"function_call": {
|
||||
"name": "cookie",
|
||||
"arguments": json.dumps({"name": "value", "age": 10}),
|
||||
}
|
||||
},
|
||||
)
|
||||
chat_generation = ChatGeneration(message=message)
|
||||
|
||||
class Cookie(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
class Dog(BaseModel):
|
||||
species: str
|
||||
|
||||
# Full output
|
||||
parser = PydanticOutputFunctionsParser(
|
||||
pydantic_schema={"cookie": Cookie, "dog": Dog}
|
||||
)
|
||||
result = parser.parse_result([chat_generation])
|
||||
"""
|
||||
|
||||
pydantic_schema: Union[Type[BaseModel], Dict[str, Type[BaseModel]]]
|
||||
"""The pydantic schema to parse the output with.
|
||||
|
||||
If multiple schemas are provided, then the function name will be used to
|
||||
determine which schema to use.
|
||||
"""
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_schema(cls, values: Dict) -> Dict:
|
||||
schema = values["pydantic_schema"]
|
||||
if "args_only" not in values:
|
||||
values["args_only"] = isinstance(schema, type) and issubclass(
|
||||
schema, BaseModel
|
||||
)
|
||||
elif values["args_only"] and isinstance(schema, Dict):
|
||||
raise ValueError(
|
||||
"If multiple pydantic schemas are provided then args_only should be"
|
||||
" False."
|
||||
)
|
||||
return values
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
_result = super().parse_result(result)
|
||||
if self.args_only:
|
||||
pydantic_args = self.pydantic_schema.parse_raw(_result) # type: ignore
|
||||
else:
|
||||
fn_name = _result["name"]
|
||||
_args = _result["arguments"]
|
||||
pydantic_args = self.pydantic_schema[fn_name].parse_raw(_args) # type: ignore # noqa: E501
|
||||
return pydantic_args
|
||||
|
||||
|
||||
class PydanticAttrOutputFunctionsParser(PydanticOutputFunctionsParser):
|
||||
"""Parse an output as an attribute of a pydantic object."""
|
||||
|
||||
attr_name: str
|
||||
"""The name of the attribute to return."""
|
||||
|
||||
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
||||
result = super().parse_result(result)
|
||||
return getattr(result, self.attr_name)
|
||||
__all__ = [
|
||||
"PydanticOutputFunctionsParser",
|
||||
"PydanticAttrOutputFunctionsParser",
|
||||
"JsonOutputFunctionsParser",
|
||||
"JsonKeyOutputFunctionsParser",
|
||||
]
|
||||
|
@ -2,12 +2,11 @@ from operator import itemgetter
|
||||
from typing import Any, Callable, List, Mapping, Optional, Union
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
from langchain_core.runnables import RouterRunnable, Runnable
|
||||
from langchain_core.runnables.base import RunnableBindingBase
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
|
||||
|
||||
class OpenAIFunction(TypedDict):
|
||||
"""A function description for ChatOpenAI"""
|
||||
|
@ -1,8 +1,7 @@
|
||||
from typing import Any, AsyncIterator, Iterator
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
|
||||
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
|
||||
GOOD_JSON = """```json
|
||||
{
|
||||
|
@ -5,7 +5,6 @@ from typing import List, Optional
|
||||
from langchain import hub
|
||||
from langchain.callbacks.tracers.evaluation import EvaluatorCallbackHandler
|
||||
from langchain.callbacks.tracers.schemas import Run
|
||||
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
from langchain.schema import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
@ -14,6 +13,7 @@ from langchain.schema import (
|
||||
get_buffer_string,
|
||||
)
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import Runnable
|
||||
|
@ -1,7 +1,7 @@
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
||||
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||
from langchain_core.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_experimental.llms.anthropic_functions import AnthropicFunctions
|
||||
|
@ -1,7 +1,6 @@
|
||||
from operator import itemgetter
|
||||
from typing import Literal
|
||||
|
||||
from langchain.output_parsers.openai_functions import PydanticAttrOutputFunctionsParser
|
||||
from langchain.retrievers import (
|
||||
ArxivRetriever,
|
||||
KayAiRetriever,
|
||||
@ -11,6 +10,9 @@ from langchain.retrievers import (
|
||||
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.output_parsers.openai_functions import (
|
||||
PydanticAttrOutputFunctionsParser,
|
||||
)
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import (
|
||||
|
Loading…
Reference in New Issue
Block a user