mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-12 14:23:58 +00:00
docs: model parameter mandatory for cohere embedding and rerank (#23349)
Latest langchain-cohere sdk mandates passing in the model parameter into the Embeddings and Reranker inits. This PR is to update the docs to reflect these changes.
This commit is contained in:
parent
aee55eda39
commit
7677ceea60
@ -67,15 +67,16 @@ If you'd prefer not to set an environment variable you can pass the key in direc
|
|||||||
```python
|
```python
|
||||||
from langchain_cohere import CohereEmbeddings
|
from langchain_cohere import CohereEmbeddings
|
||||||
|
|
||||||
embeddings_model = CohereEmbeddings(cohere_api_key="...")
|
embeddings_model = CohereEmbeddings(cohere_api_key="...", model='embed-english-v3.0')
|
||||||
```
|
```
|
||||||
|
|
||||||
Otherwise you can initialize without any params:
|
Otherwise you can initialize simply as shown below:
|
||||||
```python
|
```python
|
||||||
from langchain_cohere import CohereEmbeddings
|
from langchain_cohere import CohereEmbeddings
|
||||||
|
|
||||||
embeddings_model = CohereEmbeddings()
|
embeddings_model = CohereEmbeddings(model='embed-english-v3.0')
|
||||||
```
|
```
|
||||||
|
Do note that it is mandatory to pass the model parameter while initializing the CohereEmbeddings class.
|
||||||
|
|
||||||
</TabItem>
|
</TabItem>
|
||||||
<TabItem value="huggingface" label="Hugging Face">
|
<TabItem value="huggingface" label="Hugging Face">
|
||||||
|
@ -309,9 +309,9 @@
|
|||||||
"documents = TextLoader(\"../../how_to/state_of_the_union.txt\").load()\n",
|
"documents = TextLoader(\"../../how_to/state_of_the_union.txt\").load()\n",
|
||||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
|
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
|
||||||
"texts = text_splitter.split_documents(documents)\n",
|
"texts = text_splitter.split_documents(documents)\n",
|
||||||
"retriever = FAISS.from_documents(texts, CohereEmbeddings()).as_retriever(\n",
|
"retriever = FAISS.from_documents(\n",
|
||||||
" search_kwargs={\"k\": 20}\n",
|
" texts, CohereEmbeddings(model=\"embed-english-v3.0\")\n",
|
||||||
")\n",
|
").as_retriever(search_kwargs={\"k\": 20})\n",
|
||||||
"\n",
|
"\n",
|
||||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||||
"docs = retriever.invoke(query)\n",
|
"docs = retriever.invoke(query)\n",
|
||||||
@ -324,7 +324,8 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Doing reranking with CohereRerank\n",
|
"## Doing reranking with CohereRerank\n",
|
||||||
"Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll add an `CohereRerank`, uses the Cohere rerank endpoint to rerank the returned results."
|
"Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll add an `CohereRerank`, uses the Cohere rerank endpoint to rerank the returned results.\n",
|
||||||
|
"Do note that it is mandatory to specify the model name in CohereRerank!"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -339,7 +340,7 @@
|
|||||||
"from langchain_community.llms import Cohere\n",
|
"from langchain_community.llms import Cohere\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = Cohere(temperature=0)\n",
|
"llm = Cohere(temperature=0)\n",
|
||||||
"compressor = CohereRerank()\n",
|
"compressor = CohereRerank(model=\"rerank-english-v3.0\")\n",
|
||||||
"compression_retriever = ContextualCompressionRetriever(\n",
|
"compression_retriever = ContextualCompressionRetriever(\n",
|
||||||
" base_compressor=compressor, base_retriever=retriever\n",
|
" base_compressor=compressor, base_retriever=retriever\n",
|
||||||
")\n",
|
")\n",
|
||||||
|
@ -40,7 +40,9 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"embeddings = CohereEmbeddings(model=\"embed-english-light-v3.0\")"
|
"embeddings = CohereEmbeddings(\n",
|
||||||
|
" model=\"embed-english-light-v3.0\"\n",
|
||||||
|
") # It is mandatory to pass a model parameter to initialize the CohereEmbeddings object"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -78,7 +78,7 @@
|
|||||||
"# See docker command above to launch a postgres instance with pgvector enabled.\n",
|
"# See docker command above to launch a postgres instance with pgvector enabled.\n",
|
||||||
"connection = \"postgresql+psycopg://langchain:langchain@localhost:6024/langchain\" # Uses psycopg3!\n",
|
"connection = \"postgresql+psycopg://langchain:langchain@localhost:6024/langchain\" # Uses psycopg3!\n",
|
||||||
"collection_name = \"my_docs\"\n",
|
"collection_name = \"my_docs\"\n",
|
||||||
"embeddings = CohereEmbeddings()\n",
|
"embeddings = CohereEmbeddings(model=\"embed-english-v3.0\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"vectorstore = PGVector(\n",
|
"vectorstore = PGVector(\n",
|
||||||
" embeddings=embeddings,\n",
|
" embeddings=embeddings,\n",
|
||||||
|
@ -23,7 +23,7 @@ parsed_data = [
|
|||||||
]
|
]
|
||||||
parsed_data[1]
|
parsed_data[1]
|
||||||
|
|
||||||
embeddings = CohereEmbeddings()
|
embeddings = CohereEmbeddings(model="embed-english-v3.0")
|
||||||
|
|
||||||
docsearch = Chroma.from_texts(
|
docsearch = Chroma.from_texts(
|
||||||
[x["title"] for x in parsed_data], embeddings, metadatas=parsed_data
|
[x["title"] for x in parsed_data], embeddings, metadatas=parsed_data
|
||||||
|
Loading…
Reference in New Issue
Block a user