Merge branch 'master' into bagatur/coerce_input

This commit is contained in:
Bagatur 2024-10-28 13:09:19 -07:00
commit 770031de82
2 changed files with 47 additions and 3 deletions

View File

@ -2146,9 +2146,13 @@ def _convert_to_openai_response_format(
if isinstance(schema, type) and is_basemodel_subclass(schema):
return schema
if "json_schema" in schema and schema.get("type") == "json_schema":
if (
isinstance(schema, dict)
and "json_schema" in schema
and schema.get("type") == "json_schema"
):
response_format = schema
elif "name" in schema and "schema" in schema:
elif isinstance(schema, dict) and "name" in schema and "schema" in schema:
response_format = {"type": "json_schema", "json_schema": schema}
else:
strict = strict if strict is not None else True

View File

@ -17,7 +17,8 @@ from langchain_core.messages import (
ToolMessage,
)
from langchain_core.messages.ai import UsageMetadata
from pydantic import BaseModel
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langchain_openai import ChatOpenAI
from langchain_openai.chat_models.base import (
@ -805,3 +806,42 @@ def test__convert_to_openai_response_format() -> None:
with pytest.raises(ValueError):
_convert_to_openai_response_format(response_format, strict=False)
@pytest.mark.parametrize("method", ["function_calling", "json_schema"])
@pytest.mark.parametrize("strict", [True, None])
def test_structured_output_strict(
method: Literal["function_calling", "json_schema"], strict: Optional[bool]
) -> None:
"""Test to verify structured output with strict=True."""
llm = ChatOpenAI(model="gpt-4o-2024-08-06")
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
llm.with_structured_output(Joke, method=method, strict=strict)
# Schema
llm.with_structured_output(Joke.model_json_schema(), method=method, strict=strict)
def test_nested_structured_output_strict() -> None:
"""Test to verify structured output with strict=True for nested object."""
llm = ChatOpenAI(model="gpt-4o-2024-08-06")
class SelfEvaluation(TypedDict):
score: int
text: str
class JokeWithEvaluation(TypedDict):
"""Joke to tell user."""
setup: str
punchline: str
self_evaluation: SelfEvaluation
llm.with_structured_output(JokeWithEvaluation, method="json_schema")