mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-04 12:18:24 +00:00
update multi index templates (#13569)
This commit is contained in:
parent
f4c0e3cc15
commit
790ed8be69
@ -1,3 +1,5 @@
|
||||
from operator import itemgetter
|
||||
|
||||
import numpy as np
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
@ -11,7 +13,6 @@ from langchain.retrievers import (
|
||||
)
|
||||
from langchain.schema import StrOutputParser
|
||||
from langchain.schema.runnable import (
|
||||
RunnableLambda,
|
||||
RunnableParallel,
|
||||
RunnablePassthrough,
|
||||
)
|
||||
@ -51,14 +52,6 @@ def fuse_retrieved_docs(input):
|
||||
]
|
||||
|
||||
|
||||
retriever_map = {
|
||||
"medical paper": pubmed,
|
||||
"scientific paper": arxiv,
|
||||
"public company finances report": sec,
|
||||
"general": wiki,
|
||||
}
|
||||
|
||||
|
||||
def format_named_docs(named_docs):
|
||||
return "\n\n".join(
|
||||
f"Source: {source}\n\n{doc.page_content}" for source, doc in named_docs
|
||||
@ -83,19 +76,26 @@ class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
answer_chain = (
|
||||
{
|
||||
"question": itemgetter("question"),
|
||||
"sources": lambda x: format_named_docs(x["sources"]),
|
||||
}
|
||||
| prompt
|
||||
| ChatOpenAI(model="gpt-3.5-turbo-1106")
|
||||
| StrOutputParser()
|
||||
).with_config(run_name="answer")
|
||||
chain = (
|
||||
(
|
||||
RunnableParallel(
|
||||
{"question": RunnablePassthrough(), "sources": retrieve_all}
|
||||
).with_config(run_name="add_sources")
|
||||
| RunnablePassthrough.assign(
|
||||
sources=(
|
||||
RunnableLambda(fuse_retrieved_docs) | format_named_docs
|
||||
).with_config(run_name="fuse_and_format")
|
||||
).with_config(run_name="update_sources")
|
||||
| prompt
|
||||
| ChatOpenAI(model="gpt-3.5-turbo-1106")
|
||||
| StrOutputParser()
|
||||
| RunnablePassthrough.assign(sources=fuse_retrieved_docs).with_config(
|
||||
run_name="fuse"
|
||||
)
|
||||
| RunnablePassthrough.assign(answer=answer_chain).with_config(
|
||||
run_name="add_answer"
|
||||
)
|
||||
)
|
||||
.with_config(run_name="QA with fused results")
|
||||
.with_types(input_type=Question)
|
||||
|
@ -28,7 +28,7 @@ wiki = WikipediaRetriever(top_k_results=5, doc_content_chars_max=2000).with_conf
|
||||
run_name="wiki"
|
||||
)
|
||||
|
||||
llm = ChatOpenAI(model="gpt-3.5-turbo-1106")
|
||||
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
||||
|
||||
|
||||
class Search(BaseModel):
|
||||
@ -45,18 +45,29 @@ class Search(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
classifier = llm.bind(
|
||||
retriever_name = {
|
||||
"medical paper": "PubMed",
|
||||
"scientific paper": "ArXiv",
|
||||
"public company finances report": "SEC filings (Kay AI)",
|
||||
"general": "Wikipedia",
|
||||
}
|
||||
|
||||
classifier = (
|
||||
llm.bind(
|
||||
functions=[convert_pydantic_to_openai_function(Search)],
|
||||
function_call={"name": "Search"},
|
||||
) | PydanticAttrOutputFunctionsParser(
|
||||
)
|
||||
| PydanticAttrOutputFunctionsParser(
|
||||
pydantic_schema=Search, attr_name="question_resource"
|
||||
)
|
||||
| retriever_name.get
|
||||
)
|
||||
|
||||
retriever_map = {
|
||||
"medical paper": pubmed,
|
||||
"scientific paper": arxiv,
|
||||
"public company finances report": sec,
|
||||
"general": wiki,
|
||||
"PubMed": pubmed,
|
||||
"ArXiv": arxiv,
|
||||
"SEC filings (Kay AI)": sec,
|
||||
"Wikipedia": wiki,
|
||||
}
|
||||
router_retriever = RouterRunnable(runnables=retriever_map)
|
||||
|
||||
@ -79,17 +90,23 @@ class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = (
|
||||
(
|
||||
RunnableParallel(
|
||||
{"input": RunnablePassthrough(), "key": classifier}
|
||||
).with_config(run_name="classify")
|
||||
| RunnableParallel(
|
||||
{"question": itemgetter("input"), "sources": router_retriever | format_docs}
|
||||
).with_config(run_name="retrieve")
|
||||
retriever_chain = (
|
||||
{"input": itemgetter("question"), "key": itemgetter("retriever_choice")}
|
||||
| router_retriever
|
||||
| format_docs
|
||||
).with_config(run_name="retrieve")
|
||||
answer_chain = (
|
||||
{"sources": retriever_chain, "question": itemgetter("question")}
|
||||
| prompt
|
||||
| llm
|
||||
| StrOutputParser()
|
||||
)
|
||||
chain = (
|
||||
(
|
||||
RunnableParallel(
|
||||
question=RunnablePassthrough(), retriever_choice=classifier
|
||||
).with_config(run_name="classify")
|
||||
| RunnablePassthrough.assign(answer=answer_chain).with_config(run_name="answer")
|
||||
)
|
||||
.with_config(run_name="QA with router")
|
||||
.with_types(input_type=Question)
|
||||
|
Loading…
Reference in New Issue
Block a user