mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-24 20:09:01 +00:00
Rm retriever kwargs (#7013)
Doesn't actually limit the Retriever interface but hopefully in practice it does
This commit is contained in:
@@ -7,18 +7,19 @@ from langchain.document_loaders import TextLoader
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.vectorstores import FAISS
|
||||
|
||||
|
||||
def test_retrieval_qa_saving_loading(tmp_path: Path) -> None:
|
||||
"""Test saving and loading."""
|
||||
loader = TextLoader("docs/modules/state_of_the_union.txt")
|
||||
loader = TextLoader("docs/extras/modules/state_of_the_union.txt")
|
||||
documents = loader.load()
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
texts = text_splitter.split_documents(documents)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
docsearch = Chroma.from_documents(texts, embeddings)
|
||||
docsearch = FAISS.from_documents(texts, embeddings)
|
||||
qa = RetrievalQA.from_llm(llm=OpenAI(), retriever=docsearch.as_retriever())
|
||||
qa.run("What did the president say about Ketanji Brown Jackson?")
|
||||
|
||||
file_path = tmp_path / "RetrievalQA_chain.yaml"
|
||||
qa.save(file_path=file_path)
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
|
||||
from langchain.retrievers.document_compressors import EmbeddingsFilter
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.vectorstores import FAISS
|
||||
|
||||
|
||||
def test_contextual_compression_retriever_get_relevant_docs() -> None:
|
||||
@@ -13,7 +13,7 @@ def test_contextual_compression_retriever_get_relevant_docs() -> None:
|
||||
]
|
||||
embeddings = OpenAIEmbeddings()
|
||||
base_compressor = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75)
|
||||
base_retriever = Chroma.from_texts(texts, embedding=embeddings).as_retriever(
|
||||
base_retriever = FAISS.from_texts(texts, embedding=embeddings).as_retriever(
|
||||
search_kwargs={"k": len(texts)}
|
||||
)
|
||||
retriever = ContextualCompressionRetriever(
|
||||
|
Reference in New Issue
Block a user