community[patch]: update Gradient embeddings (#14846)

- **Description:** Going forward, we have a own API `pip install
gradientai`. Therefore gradually removing the self-build packages in
llamaindex, haystack and langchain.
  - **Issue:** None.
  - **Dependencies:** `pip install gradientai`
  - **Tag maintainer:** @michaelfeil
This commit is contained in:
Michael Feil
2023-12-19 17:46:33 +01:00
committed by GitHub
parent 6cc3c2452c
commit 7b96de3d5d
5 changed files with 157 additions and 361 deletions

View File

@@ -1,15 +1,9 @@
import asyncio
import logging
import os
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Callable, Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional
import aiohttp
import numpy as np
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
from packaging.version import parse
__all__ = ["GradientEmbeddings"]
@@ -49,6 +43,9 @@ class GradientEmbeddings(BaseModel, Embeddings):
gradient_api_url: str = "https://api.gradient.ai/api"
"""Endpoint URL to use."""
query_prompt_for_retrieval: Optional[str] = None
"""Query pre-prompt"""
client: Any = None #: :meta private:
"""Gradient client."""
@@ -72,21 +69,24 @@ class GradientEmbeddings(BaseModel, Embeddings):
values["gradient_api_url"] = get_from_dict_or_env(
values, "gradient_api_url", "GRADIENT_API_URL"
)
try:
import gradientai
except ImportError:
raise ImportError(
'GradientEmbeddings requires `pip install -U "gradientai>=1.4.0"`.'
)
values["client"] = TinyAsyncGradientEmbeddingClient(
if parse(gradientai.__version__) < parse("1.4.0"):
raise ImportError(
'GradientEmbeddings requires `pip install -U "gradientai>=1.4.0"`.'
)
gradient = gradientai.Gradient(
access_token=values["gradient_access_token"],
workspace_id=values["gradient_workspace_id"],
host=values["gradient_api_url"],
)
try:
import gradientai # noqa
except ImportError:
logging.warning(
"DeprecationWarning: `GradientEmbeddings` will use "
"`pip install gradientai` in future releases of langchain."
)
except Exception:
pass
values["client"] = gradient.get_embeddings_model(slug=values["model"])
return values
@@ -99,11 +99,11 @@ class GradientEmbeddings(BaseModel, Embeddings):
Returns:
List of embeddings, one for each text.
"""
embeddings = self.client.embed(
model=self.model,
texts=texts,
)
return embeddings
inputs = [{"input": text} for text in texts]
result = self.client.embed(inputs=inputs).embeddings
return [e.embedding for e in result]
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Async call out to Gradient's embedding endpoint.
@@ -114,11 +114,11 @@ class GradientEmbeddings(BaseModel, Embeddings):
Returns:
List of embeddings, one for each text.
"""
embeddings = await self.client.aembed(
model=self.model,
texts=texts,
)
return embeddings
inputs = [{"input": text} for text in texts]
result = (await self.client.aembed(inputs=inputs)).embeddings
return [e.embedding for e in result]
def embed_query(self, text: str) -> List[float]:
"""Call out to Gradient's embedding endpoint.
@@ -129,7 +129,12 @@ class GradientEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]
query = (
f"{self.query_prompt_for_retrieval} {text}"
if self.query_prompt_for_retrieval
else text
)
return self.embed_documents([query])[0]
async def aembed_query(self, text: str) -> List[float]:
"""Async call out to Gradient's embedding endpoint.
@@ -140,240 +145,22 @@ class GradientEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
embeddings = await self.aembed_documents([text])
query = (
f"{self.query_prompt_for_retrieval} {text}"
if self.query_prompt_for_retrieval
else text
)
embeddings = await self.aembed_documents([query])
return embeddings[0]
class TinyAsyncGradientEmbeddingClient: #: :meta private:
"""A helper tool to embed Gradient. Not part of Langchain's or Gradients stable API,
direct use discouraged.
To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your
API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace,
or alternatively provide them as keywords to the constructor of this class.
Example:
.. code-block:: python
mini_client = TinyAsyncGradientEmbeddingClient(
workspace_id="12345614fc0_workspace",
access_token="gradientai-access_token",
)
embeds = mini_client.embed(
model="bge-large",
text=["doc1", "doc2"]
)
# or
embeds = await mini_client.aembed(
model="bge-large",
text=["doc1", "doc2"]
)
"""Deprecated, TinyAsyncGradientEmbeddingClient was removed.
This class is just for backwards compatibility with older versions
of langchain_community.
It might be entirely removed in the future.
"""
def __init__(
self,
access_token: Optional[str] = None,
workspace_id: Optional[str] = None,
host: str = "https://api.gradient.ai/api",
aiosession: Optional[aiohttp.ClientSession] = None,
) -> None:
self.access_token = access_token or os.environ.get(
"GRADIENT_ACCESS_TOKEN", None
)
self.workspace_id = workspace_id or os.environ.get(
"GRADIENT_WORKSPACE_ID", None
)
self.host = host
self.aiosession = aiosession
if self.access_token is None or len(self.access_token) < 10:
raise ValueError(
"env variable `GRADIENT_ACCESS_TOKEN` or "
" param `access_token` must be set "
)
if self.workspace_id is None or len(self.workspace_id) < 3:
raise ValueError(
"env variable `GRADIENT_WORKSPACE_ID` or "
" param `workspace_id` must be set"
)
if self.host is None or len(self.host) < 3:
raise ValueError(" param `host` must be set to a valid url")
self._batch_size = 128
@staticmethod
def _permute(
texts: List[str], sorter: Callable = len
) -> Tuple[List[str], Callable]:
"""Sort texts in ascending order, and
delivers a lambda expr, which can sort a same length list
https://github.com/UKPLab/sentence-transformers/blob/
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
Args:
texts (List[str]): _description_
sorter (Callable, optional): _description_. Defaults to len.
Returns:
Tuple[List[str], Callable]: _description_
Example:
```
texts = ["one","three","four"]
perm_texts, undo = self._permute(texts)
texts == undo(perm_texts)
```
"""
if len(texts) == 1:
# special case query
return texts, lambda t: t
length_sorted_idx = np.argsort([-sorter(sen) for sen in texts])
texts_sorted = [texts[idx] for idx in length_sorted_idx]
return texts_sorted, lambda unsorted_embeddings: [ # noqa E731
unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx)
]
def _batch(self, texts: List[str]) -> List[List[str]]:
"""
splits Lists of text parts into batches of size max `self._batch_size`
When encoding vector database,
Args:
texts (List[str]): List of sentences
self._batch_size (int, optional): max batch size of one request.
Returns:
List[List[str]]: Batches of List of sentences
"""
if len(texts) == 1:
# special case query
return [texts]
batches = []
for start_index in range(0, len(texts), self._batch_size):
batches.append(texts[start_index : start_index + self._batch_size])
return batches
@staticmethod
def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]:
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
# special case query
return batch_of_texts[0]
texts = []
for sublist in batch_of_texts:
texts.extend(sublist)
return texts
def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]:
"""Build the kwargs for the Post request, used by sync
Args:
model (str): _description_
texts (List[str]): _description_
Returns:
Dict[str, Collection[str]]: _description_
"""
return dict(
url=f"{self.host}/embeddings/{model}",
headers={
"authorization": f"Bearer {self.access_token}",
"x-gradient-workspace-id": f"{self.workspace_id}",
"accept": "application/json",
"content-type": "application/json",
},
json=dict(
inputs=[{"input": i} for i in texts],
),
)
def _sync_request_embed(
self, model: str, batch_texts: List[str]
) -> List[List[float]]:
response = requests.post(
**self._kwargs_post_request(model=model, texts=batch_texts)
)
if response.status_code != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status_code}: {response.text}"
)
return [e["embedding"] for e in response.json()["embeddings"]]
def embed(self, model: str, texts: List[str]) -> List[List[float]]:
"""call the embedding of model
Args:
model (str): to embedding model
texts (List[str]): List of sentences to embed.
Returns:
List[List[float]]: List of vectors for each sentence
"""
perm_texts, unpermute_func = self._permute(texts)
perm_texts_batched = self._batch(perm_texts)
# Request
map_args = (
self._sync_request_embed,
[model] * len(perm_texts_batched),
perm_texts_batched,
)
if len(perm_texts_batched) == 1:
embeddings_batch_perm = list(map(*map_args))
else:
with ThreadPoolExecutor(32) as p:
embeddings_batch_perm = list(p.map(*map_args))
embeddings_perm = self._unbatch(embeddings_batch_perm)
embeddings = unpermute_func(embeddings_perm)
return embeddings
async def _async_request(
self, session: aiohttp.ClientSession, kwargs: Dict[str, Any]
) -> List[List[float]]:
async with session.post(**kwargs) as response:
if response.status != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status}: {response.text}"
)
embedding = (await response.json())["embeddings"]
return [e["embedding"] for e in embedding]
async def aembed(self, model: str, texts: List[str]) -> List[List[float]]:
"""call the embedding of model, async method
Args:
model (str): to embedding model
texts (List[str]): List of sentences to embed.
Returns:
List[List[float]]: List of vectors for each sentence
"""
perm_texts, unpermute_func = self._permute(texts)
perm_texts_batched = self._batch(perm_texts)
# Request
if self.aiosession is None:
self.aiosession = aiohttp.ClientSession(
trust_env=True, connector=aiohttp.TCPConnector(limit=32)
)
async with self.aiosession as session:
embeddings_batch_perm = await asyncio.gather(
*[
self._async_request(
session=session,
**self._kwargs_post_request(model=model, texts=t),
)
for t in perm_texts_batched
]
)
embeddings_perm = self._unbatch(embeddings_batch_perm)
embeddings = unpermute_func(embeddings_perm)
return embeddings
def __init__(self, *args, **kwargs) -> None:
raise ValueError("Deprecated,TinyAsyncGradientEmbeddingClient was removed.")