From 7c175e3fdaed71c9d031b7f62eabcade075695ed Mon Sep 17 00:00:00 2001 From: cold-eye <48782821+cold-eye@users.noreply.github.com> Date: Sat, 1 Mar 2025 11:10:41 -0800 Subject: [PATCH] Update ascend.py (#30060) add batch_size to fix oom when embed large amount texts Thank you for contributing to LangChain! - [ ] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [ ] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** a description of the change - **Issue:** the issue # it fixes, if applicable - **Dependencies:** any dependencies required for this change - **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out! - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. --- .../langchain_community/embeddings/ascend.py | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/libs/community/langchain_community/embeddings/ascend.py b/libs/community/langchain_community/embeddings/ascend.py index c8cb059177b..940b84bbfc5 100644 --- a/libs/community/langchain_community/embeddings/ascend.py +++ b/libs/community/langchain_community/embeddings/ascend.py @@ -30,6 +30,7 @@ class AscendEmbeddings(Embeddings, BaseModel): document_instruction: str = "" use_fp16: bool = True pooling_method: Optional[str] = "cls" + batch_size: int = 32 model: Any tokenizer: Any @@ -119,7 +120,18 @@ class AscendEmbeddings(Embeddings, BaseModel): ) def embed_documents(self, texts: List[str]) -> List[List[float]]: - return self.encode([self.document_instruction + text for text in texts]) + try: + import numpy as np + except ImportError as e: + raise ImportError( + "Unable to import numpy, please install with `pip install -U numpy`." + ) from e + embedding_list = [] + for i in range(0, len(texts), self.batch_size): + texts_ = texts[i : i + self.batch_size] + emb = self.encode([self.document_instruction + text for text in texts_]) + embedding_list.append(emb) + return np.concatenate(embedding_list) def embed_query(self, text: str) -> List[float]: return self.encode([self.query_instruction + text])[0]