mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-06 03:27:55 +00:00
templates: Add rag lantern template (#16523)
Replace this entire comment with: - **Description:** Added a template for lantern rag usage. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
516cc44b3f
commit
7c26ef88a1
1
templates/rag-lantern/.gitignore
vendored
Normal file
1
templates/rag-lantern/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
.env
|
129
templates/rag-lantern/README.md
Normal file
129
templates/rag-lantern/README.md
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
|
||||||
|
# rag_lantern
|
||||||
|
|
||||||
|
This template performs RAG with Lantern.
|
||||||
|
|
||||||
|
[Lantern](https://lantern.dev) is an open-source vector database built on top of [PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL). It enables vector search and embedding generation inside your database.
|
||||||
|
|
||||||
|
## Environment Setup
|
||||||
|
|
||||||
|
Set the `OPENAI_API_KEY` environment variable to access the OpenAI models.
|
||||||
|
|
||||||
|
To get your `OPENAI_API_KEY`, navigate to [API keys](https://platform.openai.com/account/api-keys) on your OpenAI account and create a new secret key.
|
||||||
|
|
||||||
|
To find your `LANTERN_URL` and `LANTERN_SERVICE_KEY`, head to your Lantern project's [API settings](https://lantern.dev/dashboard/project/_/settings/api).
|
||||||
|
|
||||||
|
- `LANTERN_URL` corresponds to the Project URL
|
||||||
|
- `LANTERN_SERVICE_KEY` corresponds to the `service_role` API key
|
||||||
|
|
||||||
|
|
||||||
|
```shell
|
||||||
|
export LANTERN_URL=
|
||||||
|
export LANTERN_SERVICE_KEY=
|
||||||
|
export OPENAI_API_KEY=
|
||||||
|
```
|
||||||
|
|
||||||
|
## Setup Lantern Database
|
||||||
|
|
||||||
|
Use these steps to setup your Lantern database if you haven't already.
|
||||||
|
|
||||||
|
1. Head to [https://lantern.dev](https://lantern.dev) to create your Lantern database.
|
||||||
|
2. In your favorite SQL client, jump to the SQL editor and run the following script to setup your database as a vector store:
|
||||||
|
|
||||||
|
```sql
|
||||||
|
-- Create a table to store your documents
|
||||||
|
create table
|
||||||
|
documents (
|
||||||
|
id uuid primary key,
|
||||||
|
content text, -- corresponds to Document.pageContent
|
||||||
|
metadata jsonb, -- corresponds to Document.metadata
|
||||||
|
embedding REAL[1536] -- 1536 works for OpenAI embeddings, change as needed
|
||||||
|
);
|
||||||
|
|
||||||
|
-- Create a function to search for documents
|
||||||
|
create function match_documents (
|
||||||
|
query_embedding REAL[1536],
|
||||||
|
filter jsonb default '{}'
|
||||||
|
) returns table (
|
||||||
|
id uuid,
|
||||||
|
content text,
|
||||||
|
metadata jsonb,
|
||||||
|
similarity float
|
||||||
|
) language plpgsql as $$
|
||||||
|
#variable_conflict use_column
|
||||||
|
begin
|
||||||
|
return query
|
||||||
|
select
|
||||||
|
id,
|
||||||
|
content,
|
||||||
|
metadata,
|
||||||
|
1 - (documents.embedding <=> query_embedding) as similarity
|
||||||
|
from documents
|
||||||
|
where metadata @> filter
|
||||||
|
order by documents.embedding <=> query_embedding;
|
||||||
|
end;
|
||||||
|
$$;
|
||||||
|
```
|
||||||
|
|
||||||
|
## Setup Environment Variables
|
||||||
|
|
||||||
|
Since we are using [`Lantern`](https://python.langchain.com/docs/integrations/vectorstores/lantern) and [`OpenAIEmbeddings`](https://python.langchain.com/docs/integrations/text_embedding/openai), we need to load their API keys.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
First, install the LangChain CLI:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install -U langchain-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
To create a new LangChain project and install this as the only package, you can do:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain app new my-app --package rag-lantern
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to add this to an existing project, you can just run:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain app add rag-lantern
|
||||||
|
```
|
||||||
|
|
||||||
|
And add the following code to your `server.py` file:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from rag_lantern.chain import chain as rag_lantern_chain
|
||||||
|
|
||||||
|
add_routes(app, rag_lantern_chain, path="/rag-lantern")
|
||||||
|
```
|
||||||
|
|
||||||
|
(Optional) Let's now configure LangSmith.
|
||||||
|
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||||
|
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||||
|
If you don't have access, you can skip this section
|
||||||
|
|
||||||
|
```shell
|
||||||
|
export LANGCHAIN_TRACING_V2=true
|
||||||
|
export LANGCHAIN_API_KEY=<your-api-key>
|
||||||
|
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain serve
|
||||||
|
```
|
||||||
|
|
||||||
|
This will start the FastAPI app with a server is running locally at
|
||||||
|
[http://localhost:8000](http://localhost:8000)
|
||||||
|
|
||||||
|
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||||
|
We can access the playground at [http://127.0.0.1:8000/rag-lantern/playground](http://127.0.0.1:8000/rag-lantern/playground)
|
||||||
|
|
||||||
|
We can access the template from code with:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langserve.client import RemoteRunnable
|
||||||
|
|
||||||
|
runnable = RemoteRunnable("http://localhost:8000/rag-lantern")
|
||||||
|
```
|
2090
templates/rag-lantern/poetry.lock
generated
Normal file
2090
templates/rag-lantern/poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
39
templates/rag-lantern/pyproject.toml
Normal file
39
templates/rag-lantern/pyproject.toml
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
[tool.poetry]
|
||||||
|
name = "rag-lantern"
|
||||||
|
version = "0.1.0"
|
||||||
|
description = "RAG using Lantern retriver"
|
||||||
|
authors = [
|
||||||
|
"Gustavo Reyes <gustavo@lantern.dev>",
|
||||||
|
]
|
||||||
|
readme = "README.md"
|
||||||
|
|
||||||
|
[tool.poetry.dependencies]
|
||||||
|
python = ">=3.8.1,<4.0"
|
||||||
|
langchain = "^0.1"
|
||||||
|
openai = "<2"
|
||||||
|
tiktoken = "^0.5.1"
|
||||||
|
rag-lantern = {path = "packages/rag-lantern", develop = true}
|
||||||
|
|
||||||
|
[tool.poetry.group.dev.dependencies]
|
||||||
|
langchain-cli = ">=0.0.15"
|
||||||
|
[tool.poetry.group.dev.dependencies.python-dotenv]
|
||||||
|
extras = [
|
||||||
|
"cli",
|
||||||
|
]
|
||||||
|
version = "^1.0.0"
|
||||||
|
|
||||||
|
[tool.langserve]
|
||||||
|
export_module = "rag_lantern.chain"
|
||||||
|
export_attr = "chain"
|
||||||
|
|
||||||
|
[tool.templates-hub]
|
||||||
|
use-case = "rag"
|
||||||
|
author = "Lantern"
|
||||||
|
integrations = ["OpenAI", "Lantern"]
|
||||||
|
tags = ["vectordbs"]
|
||||||
|
|
||||||
|
[build-system]
|
||||||
|
requires = [
|
||||||
|
"poetry-core",
|
||||||
|
]
|
||||||
|
build-backend = "poetry.core.masonry.api"
|
0
templates/rag-lantern/rag_lantern/__init__.py
Normal file
0
templates/rag-lantern/rag_lantern/__init__.py
Normal file
47
templates/rag-lantern/rag_lantern/chain.py
Normal file
47
templates/rag-lantern/rag_lantern/chain.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
from langchain_community.chat_models import ChatOpenAI
|
||||||
|
from langchain_community.embeddings import OpenAIEmbeddings
|
||||||
|
from langchain_community.vectorstores import Lantern
|
||||||
|
from langchain_core.output_parsers import StrOutputParser
|
||||||
|
from langchain_core.prompts import ChatPromptTemplate
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel
|
||||||
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||||
|
|
||||||
|
CONNECTION_STRING = "postgresql://postgres:postgres@localhost:5432"
|
||||||
|
COLLECTION_NAME = "documents"
|
||||||
|
DB_NAME = "postgres"
|
||||||
|
|
||||||
|
embeddings = OpenAIEmbeddings()
|
||||||
|
|
||||||
|
vectorstore = Lantern(
|
||||||
|
collection_name=COLLECTION_NAME,
|
||||||
|
connection_string=CONNECTION_STRING,
|
||||||
|
embedding_function=embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
retriever = vectorstore.as_retriever()
|
||||||
|
|
||||||
|
|
||||||
|
template = """Answer the question based only on the following context:
|
||||||
|
{context}
|
||||||
|
|
||||||
|
Question: {question}
|
||||||
|
"""
|
||||||
|
|
||||||
|
prompt = ChatPromptTemplate.from_template(template)
|
||||||
|
|
||||||
|
model = ChatOpenAI()
|
||||||
|
|
||||||
|
chain = (
|
||||||
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||||
|
| prompt
|
||||||
|
| model
|
||||||
|
| StrOutputParser()
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Add typing for input
|
||||||
|
class Question(BaseModel):
|
||||||
|
__root__: str
|
||||||
|
|
||||||
|
|
||||||
|
chain = chain.with_types(input_type=Question)
|
0
templates/rag-lantern/tests/__init__.py
Normal file
0
templates/rag-lantern/tests/__init__.py
Normal file
Loading…
Reference in New Issue
Block a user