mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 14:31:55 +00:00
Add Xorbits Dataframe as a Document Loader (#7319)
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source computing framework that makes it easy to scale data science and machine learning workloads in parallel. Xorbits can leverage multi cores or GPUs to accelerate computation on a single machine, or scale out up to thousands of machines to support processing terabytes of data. - This PR added support for the Xorbits document loader, which allows langchain to leverage Xorbits to parallelize and distribute the loading of data. - Dependencies: This change requires the Xorbits library to be installed in order to be used. `pip install xorbits` - Request for review: @rlancemartin, @eyurtsev - Twitter handle: https://twitter.com/Xorbitsio Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
64
tests/integration_tests/document_loaders/test_xorbits.py
Normal file
64
tests/integration_tests/document_loaders/test_xorbits.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import pytest
|
||||
|
||||
from langchain.document_loaders import XorbitsLoader
|
||||
from langchain.schema import Document
|
||||
|
||||
try:
|
||||
import xorbits # noqa: F401
|
||||
|
||||
xorbits_installed = True
|
||||
except ImportError:
|
||||
xorbits_installed = False
|
||||
|
||||
|
||||
@pytest.mark.skipif(not xorbits_installed, reason="xorbits not installed")
|
||||
def test_load_returns_list_of_documents() -> None:
|
||||
import xorbits.pandas as pd
|
||||
|
||||
data = {
|
||||
"text": ["Hello", "World"],
|
||||
"author": ["Alice", "Bob"],
|
||||
"date": ["2022-01-01", "2022-01-02"],
|
||||
}
|
||||
loader = XorbitsLoader(pd.DataFrame(data))
|
||||
docs = loader.load()
|
||||
assert isinstance(docs, list)
|
||||
assert all(isinstance(doc, Document) for doc in docs)
|
||||
assert len(docs) == 2
|
||||
|
||||
|
||||
@pytest.mark.skipif(not xorbits_installed, reason="xorbits not installed")
|
||||
def test_load_converts_dataframe_columns_to_document_metadata() -> None:
|
||||
import xorbits.pandas as pd
|
||||
|
||||
data = {
|
||||
"text": ["Hello", "World"],
|
||||
"author": ["Alice", "Bob"],
|
||||
"date": ["2022-01-01", "2022-01-02"],
|
||||
}
|
||||
loader = XorbitsLoader(pd.DataFrame(data))
|
||||
docs = loader.load()
|
||||
expected = {
|
||||
"author": ["Alice", "Bob"],
|
||||
"date": ["2022-01-01", "2022-01-02"],
|
||||
}
|
||||
for i, doc in enumerate(docs):
|
||||
assert doc.metadata["author"] == expected["author"][i]
|
||||
assert doc.metadata["date"] == expected["date"][i]
|
||||
|
||||
|
||||
@pytest.mark.skipif(not xorbits_installed, reason="xorbits not installed")
|
||||
def test_load_uses_page_content_column_to_create_document_text() -> None:
|
||||
import xorbits.pandas as pd
|
||||
|
||||
data = {
|
||||
"text": ["Hello", "World"],
|
||||
"author": ["Alice", "Bob"],
|
||||
"date": ["2022-01-01", "2022-01-02"],
|
||||
}
|
||||
sample_data_frame = pd.DataFrame(data)
|
||||
sample_data_frame = sample_data_frame.rename(columns={"text": "dummy_test_column"})
|
||||
loader = XorbitsLoader(sample_data_frame, page_content_column="dummy_test_column")
|
||||
docs = loader.load()
|
||||
assert docs[0].page_content == "Hello"
|
||||
assert docs[1].page_content == "World"
|
Reference in New Issue
Block a user