mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-20 22:03:52 +00:00
update anthropic
This commit is contained in:
parent
76971094ab
commit
7de02c5997
@ -1123,6 +1123,11 @@ class ChatAnthropic(BaseChatModel):
|
||||
) -> int:
|
||||
"""Count tokens in a sequence of input messages.
|
||||
|
||||
Args:
|
||||
messages: The message inputs to tokenize.
|
||||
tools: If provided, sequence of dict, BaseModel, function, or BaseTools
|
||||
to be converted to tool schemas.
|
||||
|
||||
.. versionchanged:: 0.2.5
|
||||
|
||||
Uses Anthropic's token counting API to count tokens in messages. See:
|
||||
|
@ -336,6 +336,7 @@ def test_anthropic_multimodal() -> None:
|
||||
assert isinstance(response.content, str)
|
||||
num_tokens = chat.get_num_tokens_from_messages(messages)
|
||||
assert num_tokens > 0
|
||||
import pdb; pdb.set_trace()
|
||||
|
||||
|
||||
def test_streaming() -> None:
|
||||
@ -508,24 +509,34 @@ def test_with_structured_output() -> None:
|
||||
|
||||
|
||||
def test_get_num_tokens_from_messages() -> None:
|
||||
llm = ChatAnthropic(model="claude-3-5-haiku-20241022") # type: ignore[call-arg]
|
||||
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022") # type: ignore[call-arg]
|
||||
|
||||
# Test simple case
|
||||
messages = [
|
||||
SystemMessage(content="You are an assistant."),
|
||||
HumanMessage(content="What is the weather in SF?"),
|
||||
SystemMessage(content="You are a scientist"),
|
||||
HumanMessage(content="Hello, Claude"),
|
||||
]
|
||||
num_tokens = llm.get_num_tokens_from_messages(messages)
|
||||
assert num_tokens > 0
|
||||
|
||||
# Test tool use
|
||||
@tool
|
||||
@tool(parse_docstring=True)
|
||||
def get_weather(location: str) -> str:
|
||||
"""Get weather report for a city"""
|
||||
"""Get the current weather in a given location
|
||||
|
||||
Args:
|
||||
location: The city and state, e.g. San Francisco, CA
|
||||
"""
|
||||
return "Sunny"
|
||||
|
||||
messages = [
|
||||
HumanMessage(content="What is the weather in SF?"),
|
||||
HumanMessage(content="What's the weather like in San Francisco?"),
|
||||
]
|
||||
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
|
||||
assert num_tokens > 0
|
||||
|
||||
messages = [
|
||||
HumanMessage(content="What's the weather like in San Francisco?"),
|
||||
AIMessage(
|
||||
content=[
|
||||
{"text": "Let's see.", "type": "text"},
|
||||
|
Loading…
Reference in New Issue
Block a user