diff --git a/libs/langchain/langchain/agents/format_scratchpad/__init__.py b/libs/langchain/langchain/agents/format_scratchpad/__init__.py
new file mode 100644
index 00000000000..e69de29bb2d
diff --git a/libs/langchain/langchain/agents/format_scratchpad/log.py b/libs/langchain/langchain/agents/format_scratchpad/log.py
new file mode 100644
index 00000000000..810556b2c01
--- /dev/null
+++ b/libs/langchain/langchain/agents/format_scratchpad/log.py
@@ -0,0 +1,16 @@
+from typing import List, Tuple
+
+from langchain.schema.agent import AgentAction
+
+
+def format_log_to_str(
+ intermediate_steps: List[Tuple[AgentAction, str]],
+ observation_prefix: str = "Observation: ",
+ llm_prefix: str = "Thought: ",
+) -> str:
+ """Construct the scratchpad that lets the agent continue its thought process."""
+ thoughts = ""
+ for action, observation in intermediate_steps:
+ thoughts += action.log
+ thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
+ return thoughts
diff --git a/libs/langchain/langchain/agents/format_scratchpad/log_to_messages.py b/libs/langchain/langchain/agents/format_scratchpad/log_to_messages.py
new file mode 100644
index 00000000000..c370d3a987e
--- /dev/null
+++ b/libs/langchain/langchain/agents/format_scratchpad/log_to_messages.py
@@ -0,0 +1,19 @@
+from typing import List, Tuple
+
+from langchain.schema.agent import AgentAction
+from langchain.schema.messages import AIMessage, BaseMessage, HumanMessage
+
+
+def format_log_to_messages(
+ intermediate_steps: List[Tuple[AgentAction, str]],
+ template_tool_response: str = "{observation}",
+) -> List[BaseMessage]:
+ """Construct the scratchpad that lets the agent continue its thought process."""
+ thoughts: List[BaseMessage] = []
+ for action, observation in intermediate_steps:
+ thoughts.append(AIMessage(content=action.log))
+ human_message = HumanMessage(
+ content=template_tool_response.format(observation=observation)
+ )
+ thoughts.append(human_message)
+ return thoughts
diff --git a/libs/langchain/langchain/agents/format_scratchpad/openai_functions.py b/libs/langchain/langchain/agents/format_scratchpad/openai_functions.py
new file mode 100644
index 00000000000..7294181c949
--- /dev/null
+++ b/libs/langchain/langchain/agents/format_scratchpad/openai_functions.py
@@ -0,0 +1,66 @@
+import json
+from typing import List, Sequence, Tuple
+
+from langchain.schema.agent import AgentAction, AgentActionMessageLog
+from langchain.schema.messages import AIMessage, BaseMessage, FunctionMessage
+
+
+def _convert_agent_action_to_messages(
+ agent_action: AgentAction, observation: str
+) -> List[BaseMessage]:
+ """Convert an agent action to a message.
+
+ This code is used to reconstruct the original AI message from the agent action.
+
+ Args:
+ agent_action: Agent action to convert.
+
+ Returns:
+ AIMessage that corresponds to the original tool invocation.
+ """
+ if isinstance(agent_action, AgentActionMessageLog):
+ return list(agent_action.message_log) + [
+ _create_function_message(agent_action, observation)
+ ]
+ else:
+ return [AIMessage(content=agent_action.log)]
+
+
+def _create_function_message(
+ agent_action: AgentAction, observation: str
+) -> FunctionMessage:
+ """Convert agent action and observation into a function message.
+ Args:
+ agent_action: the tool invocation request from the agent
+ observation: the result of the tool invocation
+ Returns:
+ FunctionMessage that corresponds to the original tool invocation
+ """
+ if not isinstance(observation, str):
+ try:
+ content = json.dumps(observation, ensure_ascii=False)
+ except Exception:
+ content = str(observation)
+ else:
+ content = observation
+ return FunctionMessage(
+ name=agent_action.tool,
+ content=content,
+ )
+
+
+def format_to_openai_functions(
+ intermediate_steps: Sequence[Tuple[AgentAction, str]],
+) -> List[BaseMessage]:
+ """Format intermediate steps.
+ Args:
+ intermediate_steps: Steps the LLM has taken to date, along with observations
+ Returns:
+ list of messages to send to the LLM for the next prediction
+ """
+ messages = []
+
+ for agent_action, observation in intermediate_steps:
+ messages.extend(_convert_agent_action_to_messages(agent_action, observation))
+
+ return messages
diff --git a/libs/langchain/langchain/agents/format_scratchpad/xml.py b/libs/langchain/langchain/agents/format_scratchpad/xml.py
new file mode 100644
index 00000000000..6d02cab08bd
--- /dev/null
+++ b/libs/langchain/langchain/agents/format_scratchpad/xml.py
@@ -0,0 +1,15 @@
+from typing import List, Tuple
+
+from langchain.schema.agent import AgentAction
+
+
+def format_xml(
+ intermediate_steps: List[Tuple[AgentAction, str]],
+) -> str:
+ log = ""
+ for action, observation in intermediate_steps:
+ log += (
+ f"{action.tool}{action.tool_input}"
+ f"{observation}"
+ )
+ return log
diff --git a/libs/langchain/langchain/agents/openai_functions_agent/agent_token_buffer_memory.py b/libs/langchain/langchain/agents/openai_functions_agent/agent_token_buffer_memory.py
index aa244548042..6aff31f3851 100644
--- a/libs/langchain/langchain/agents/openai_functions_agent/agent_token_buffer_memory.py
+++ b/libs/langchain/langchain/agents/openai_functions_agent/agent_token_buffer_memory.py
@@ -1,7 +1,9 @@
"""Memory used to save agent output AND intermediate steps."""
from typing import Any, Dict, List
-from langchain.agents.openai_functions_agent.base import _format_intermediate_steps
+from langchain.agents.format_scratchpad.openai_functions import (
+ format_to_openai_functions,
+)
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import BaseMessage, get_buffer_string
@@ -50,7 +52,7 @@ class AgentTokenBufferMemory(BaseChatMemory):
"""Save context from this conversation to buffer. Pruned."""
input_str, output_str = self._get_input_output(inputs, outputs)
self.chat_memory.add_user_message(input_str)
- steps = _format_intermediate_steps(outputs[self.intermediate_steps_key])
+ steps = format_to_openai_functions(outputs[self.intermediate_steps_key])
for msg in steps:
self.chat_memory.add_message(msg)
self.chat_memory.add_ai_message(output_str)
diff --git a/libs/langchain/langchain/agents/openai_functions_agent/base.py b/libs/langchain/langchain/agents/openai_functions_agent/base.py
index c54ff33319d..abac5652062 100644
--- a/libs/langchain/langchain/agents/openai_functions_agent/base.py
+++ b/libs/langchain/langchain/agents/openai_functions_agent/base.py
@@ -1,8 +1,10 @@
"""Module implements an agent that uses OpenAI's APIs function enabled API."""
-import json
from typing import Any, List, Optional, Sequence, Tuple, Union
from langchain.agents import BaseSingleActionAgent
+from langchain.agents.format_scratchpad.openai_functions import (
+ format_to_openai_functions,
+)
from langchain.agents.output_parsers.openai_functions import (
OpenAIFunctionsAgentOutputParser,
)
@@ -21,82 +23,14 @@ from langchain.schema import (
AgentFinish,
BasePromptTemplate,
)
-from langchain.schema.agent import AgentActionMessageLog
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import (
- AIMessage,
BaseMessage,
- FunctionMessage,
SystemMessage,
)
from langchain.tools import BaseTool
from langchain.tools.convert_to_openai import format_tool_to_openai_function
-# For backwards compatibility
-_FunctionsAgentAction = AgentActionMessageLog
-
-
-def _convert_agent_action_to_messages(
- agent_action: AgentAction, observation: str
-) -> List[BaseMessage]:
- """Convert an agent action to a message.
-
- This code is used to reconstruct the original AI message from the agent action.
-
- Args:
- agent_action: Agent action to convert.
-
- Returns:
- AIMessage that corresponds to the original tool invocation.
- """
- if isinstance(agent_action, _FunctionsAgentAction):
- return list(agent_action.message_log) + [
- _create_function_message(agent_action, observation)
- ]
- else:
- return [AIMessage(content=agent_action.log)]
-
-
-def _create_function_message(
- agent_action: AgentAction, observation: str
-) -> FunctionMessage:
- """Convert agent action and observation into a function message.
- Args:
- agent_action: the tool invocation request from the agent
- observation: the result of the tool invocation
- Returns:
- FunctionMessage that corresponds to the original tool invocation
- """
- if not isinstance(observation, str):
- try:
- content = json.dumps(observation, ensure_ascii=False)
- except Exception:
- content = str(observation)
- else:
- content = observation
- return FunctionMessage(
- name=agent_action.tool,
- content=content,
- )
-
-
-def _format_intermediate_steps(
- intermediate_steps: List[Tuple[AgentAction, str]],
-) -> List[BaseMessage]:
- """Format intermediate steps.
- Args:
- intermediate_steps: Steps the LLM has taken to date, along with observations
- Returns:
- list of messages to send to the LLM for the next prediction
- """
- messages = []
-
- for intermediate_step in intermediate_steps:
- agent_action, observation = intermediate_step
- messages.extend(_convert_agent_action_to_messages(agent_action, observation))
-
- return messages
-
class OpenAIFunctionsAgent(BaseSingleActionAgent):
"""An Agent driven by OpenAIs function powered API.
@@ -159,7 +93,7 @@ class OpenAIFunctionsAgent(BaseSingleActionAgent):
Returns:
Action specifying what tool to use.
"""
- agent_scratchpad = _format_intermediate_steps(intermediate_steps)
+ agent_scratchpad = format_to_openai_functions(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
@@ -198,7 +132,7 @@ class OpenAIFunctionsAgent(BaseSingleActionAgent):
Returns:
Action specifying what tool to use.
"""
- agent_scratchpad = _format_intermediate_steps(intermediate_steps)
+ agent_scratchpad = format_to_openai_functions(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
diff --git a/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py b/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py
index 5849cf97183..0fbafd591bf 100644
--- a/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py
+++ b/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py
@@ -4,6 +4,9 @@ from json import JSONDecodeError
from typing import Any, List, Optional, Sequence, Tuple, Union
from langchain.agents import BaseMultiActionAgent
+from langchain.agents.format_scratchpad.openai_functions import (
+ format_to_openai_functions,
+)
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import ChatOpenAI
@@ -25,7 +28,6 @@ from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import (
AIMessage,
BaseMessage,
- FunctionMessage,
SystemMessage,
)
from langchain.tools import BaseTool
@@ -34,68 +36,6 @@ from langchain.tools import BaseTool
_FunctionsAgentAction = AgentActionMessageLog
-def _convert_agent_action_to_messages(
- agent_action: AgentAction, observation: str
-) -> List[BaseMessage]:
- """Convert an agent action to a message.
-
- This code is used to reconstruct the original AI message from the agent action.
-
- Args:
- agent_action: Agent action to convert.
-
- Returns:
- AIMessage that corresponds to the original tool invocation.
- """
- if isinstance(agent_action, _FunctionsAgentAction):
- return list(agent_action.message_log) + [
- _create_function_message(agent_action, observation)
- ]
- else:
- return [AIMessage(content=agent_action.log)]
-
-
-def _create_function_message(
- agent_action: AgentAction, observation: str
-) -> FunctionMessage:
- """Convert agent action and observation into a function message.
- Args:
- agent_action: the tool invocation request from the agent
- observation: the result of the tool invocation
- Returns:
- FunctionMessage that corresponds to the original tool invocation
- """
- if not isinstance(observation, str):
- try:
- content = json.dumps(observation, ensure_ascii=False)
- except Exception:
- content = str(observation)
- else:
- content = observation
- return FunctionMessage(
- name=agent_action.tool,
- content=content,
- )
-
-
-def _format_intermediate_steps(
- intermediate_steps: List[Tuple[AgentAction, str]],
-) -> List[BaseMessage]:
- """Format intermediate steps.
- Args:
- intermediate_steps: Steps the LLM has taken to date, along with observations
- Returns:
- list of messages to send to the LLM for the next prediction
- """
- messages = []
-
- for intermediate_step in intermediate_steps:
- agent_action, observation = intermediate_step
- messages.extend(_convert_agent_action_to_messages(agent_action, observation))
-
- return messages
-
-
def _parse_ai_message(message: BaseMessage) -> Union[List[AgentAction], AgentFinish]:
"""Parse an AI message."""
if not isinstance(message, AIMessage):
@@ -257,7 +197,7 @@ class OpenAIMultiFunctionsAgent(BaseMultiActionAgent):
Returns:
Action specifying what tool to use.
"""
- agent_scratchpad = _format_intermediate_steps(intermediate_steps)
+ agent_scratchpad = format_to_openai_functions(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
@@ -286,7 +226,7 @@ class OpenAIMultiFunctionsAgent(BaseMultiActionAgent):
Returns:
Action specifying what tool to use.
"""
- agent_scratchpad = _format_intermediate_steps(intermediate_steps)
+ agent_scratchpad = format_to_openai_functions(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
diff --git a/libs/langchain/tests/unit_tests/agents/format_scratchpad/__init__.py b/libs/langchain/tests/unit_tests/agents/format_scratchpad/__init__.py
new file mode 100644
index 00000000000..e69de29bb2d
diff --git a/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_log.py b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_log.py
new file mode 100644
index 00000000000..411b57695c7
--- /dev/null
+++ b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_log.py
@@ -0,0 +1,40 @@
+from langchain.agents.format_scratchpad.log import format_log_to_str
+from langchain.schema.agent import AgentAction
+
+
+def test_single_agent_action_observation() -> None:
+ intermediate_steps = [
+ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1")
+ ]
+ expected_result = "Log1\nObservation: Observation1\nThought: "
+ assert format_log_to_str(intermediate_steps) == expected_result
+
+
+def test_multiple_agent_actions_observations() -> None:
+ intermediate_steps = [
+ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1"),
+ (AgentAction(tool="Tool2", tool_input="input2", log="Log2"), "Observation2"),
+ (AgentAction(tool="Tool3", tool_input="input3", log="Log3"), "Observation3"),
+ ]
+ expected_result = """Log1\nObservation: Observation1\nThought: \
+Log2\nObservation: Observation2\nThought: Log3\nObservation: \
+Observation3\nThought: """
+ assert format_log_to_str(intermediate_steps) == expected_result
+
+
+def test_custom_prefixes() -> None:
+ intermediate_steps = [
+ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1")
+ ]
+ observation_prefix = "Custom Observation: "
+ llm_prefix = "Custom Thought: "
+ expected_result = "Log1\nCustom Observation: Observation1\nCustom Thought: "
+ assert (
+ format_log_to_str(intermediate_steps, observation_prefix, llm_prefix)
+ == expected_result
+ )
+
+
+def test_empty_intermediate_steps() -> None:
+ output = format_log_to_str([])
+ assert output == ""
diff --git a/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_log_to_messages.py b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_log_to_messages.py
new file mode 100644
index 00000000000..ed7664c8b04
--- /dev/null
+++ b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_log_to_messages.py
@@ -0,0 +1,49 @@
+from langchain.agents.format_scratchpad.log_to_messages import format_log_to_messages
+from langchain.schema.agent import AgentAction
+from langchain.schema.messages import AIMessage, HumanMessage
+
+
+def test_single_intermediate_step_default_response() -> None:
+ intermediate_steps = [
+ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1")
+ ]
+ expected_result = [AIMessage(content="Log1"), HumanMessage(content="Observation1")]
+ assert format_log_to_messages(intermediate_steps) == expected_result
+
+
+def test_multiple_intermediate_steps_default_response() -> None:
+ intermediate_steps = [
+ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1"),
+ (AgentAction(tool="Tool2", tool_input="input2", log="Log2"), "Observation2"),
+ (AgentAction(tool="Tool3", tool_input="input3", log="Log3"), "Observation3"),
+ ]
+ expected_result = [
+ AIMessage(content="Log1"),
+ HumanMessage(content="Observation1"),
+ AIMessage(content="Log2"),
+ HumanMessage(content="Observation2"),
+ AIMessage(content="Log3"),
+ HumanMessage(content="Observation3"),
+ ]
+ assert format_log_to_messages(intermediate_steps) == expected_result
+
+
+def test_custom_template_tool_response() -> None:
+ intermediate_steps = [
+ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1")
+ ]
+ template_tool_response = "Response: {observation}"
+ expected_result = [
+ AIMessage(content="Log1"),
+ HumanMessage(content="Response: Observation1"),
+ ]
+ assert (
+ format_log_to_messages(
+ intermediate_steps, template_tool_response=template_tool_response
+ )
+ == expected_result
+ )
+
+
+def test_empty_steps() -> None:
+ assert format_log_to_messages([]) == []
diff --git a/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_openai_functions.py b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_openai_functions.py
new file mode 100644
index 00000000000..92dc5bcb6dc
--- /dev/null
+++ b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_openai_functions.py
@@ -0,0 +1,60 @@
+from langchain.agents.format_scratchpad.openai_functions import (
+ format_to_openai_functions,
+)
+from langchain.schema.agent import AgentActionMessageLog
+from langchain.schema.messages import AIMessage, FunctionMessage
+
+
+def test_calls_convert_agent_action_to_messages() -> None:
+ additional_kwargs1 = {
+ "function_call": {
+ "name": "tool1",
+ "arguments": "input1",
+ }
+ }
+ message1 = AIMessage(content="", additional_kwargs=additional_kwargs1)
+ action1 = AgentActionMessageLog(
+ tool="tool1", tool_input="input1", log="log1", message_log=[message1]
+ )
+ additional_kwargs2 = {
+ "function_call": {
+ "name": "tool2",
+ "arguments": "input2",
+ }
+ }
+ message2 = AIMessage(content="", additional_kwargs=additional_kwargs2)
+ action2 = AgentActionMessageLog(
+ tool="tool2", tool_input="input2", log="log2", message_log=[message2]
+ )
+
+ additional_kwargs3 = {
+ "function_call": {
+ "name": "tool3",
+ "arguments": "input3",
+ }
+ }
+ message3 = AIMessage(content="", additional_kwargs=additional_kwargs3)
+ action3 = AgentActionMessageLog(
+ tool="tool3", tool_input="input3", log="log3", message_log=[message3]
+ )
+
+ intermediate_steps = [
+ (action1, "observation1"),
+ (action2, "observation2"),
+ (action3, "observation3"),
+ ]
+ expected_messages = [
+ message1,
+ FunctionMessage(name="tool1", content="observation1"),
+ message2,
+ FunctionMessage(name="tool2", content="observation2"),
+ message3,
+ FunctionMessage(name="tool3", content="observation3"),
+ ]
+ output = format_to_openai_functions(intermediate_steps)
+ assert output == expected_messages
+
+
+def test_handles_empty_input_list() -> None:
+ output = format_to_openai_functions([])
+ assert output == []
diff --git a/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_xml.py b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_xml.py
new file mode 100644
index 00000000000..2509091ffd7
--- /dev/null
+++ b/libs/langchain/tests/unit_tests/agents/format_scratchpad/test_xml.py
@@ -0,0 +1,40 @@
+from langchain.agents.format_scratchpad.xml import format_xml
+from langchain.schema.agent import AgentAction
+
+
+def test_single_agent_action_observation() -> None:
+ # Arrange
+ agent_action = AgentAction(tool="Tool1", tool_input="Input1", log="Log1")
+ observation = "Observation1"
+ intermediate_steps = [(agent_action, observation)]
+
+ # Act
+ result = format_xml(intermediate_steps)
+ expected_result = """Tool1Input1\
+Observation1"""
+ # Assert
+ assert result == expected_result
+
+
+def test_multiple_agent_actions_observations() -> None:
+ # Arrange
+ agent_action1 = AgentAction(tool="Tool1", tool_input="Input1", log="Log1")
+ agent_action2 = AgentAction(tool="Tool2", tool_input="Input2", log="Log2")
+ observation1 = "Observation1"
+ observation2 = "Observation2"
+ intermediate_steps = [(agent_action1, observation1), (agent_action2, observation2)]
+
+ # Act
+ result = format_xml(intermediate_steps)
+
+ # Assert
+ expected_result = """Tool1Input1\
+Observation1\
+Tool2Input2\
+Observation2"""
+ assert result == expected_result
+
+
+def test_empty_list_agent_actions() -> None:
+ result = format_xml([])
+ assert result == ""