mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-21 02:19:31 +00:00
templates[patch]: Add cohere librarian template (#14601)
Adding the example I build for the Cohere hackathon. It can: use a vector database to reccommend books <img width="840" alt="image" src="https://github.com/langchain-ai/langchain/assets/144115527/96543a18-217b-4445-ab4b-950c7cced915"> Use a prompt template to provide information about the library <img width="834" alt="image" src="https://github.com/langchain-ai/langchain/assets/144115527/996c8e0f-cab0-4213-bcc9-9baf84f1494b"> Use Cohere RAG to provide grounded results <img width="822" alt="image" src="https://github.com/langchain-ai/langchain/assets/144115527/7bb4a883-5316-41a9-9d2e-19fd49a43dcb"> --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
committed by
GitHub
parent
47451951a1
commit
7e4dbb26a8
16
templates/cohere-librarian/cohere_librarian/rag.py
Normal file
16
templates/cohere-librarian/cohere_librarian/rag.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from langchain.chat_models import ChatCohere
|
||||
from langchain.retrievers import CohereRagRetriever
|
||||
|
||||
rag = CohereRagRetriever(llm=ChatCohere())
|
||||
|
||||
|
||||
def get_docs_message(message):
|
||||
docs = rag.get_relevant_documents(message)
|
||||
message_doc = next(
|
||||
(x for x in docs if x.metadata.get("type") == "model_response"), None
|
||||
)
|
||||
return message_doc.page_content
|
||||
|
||||
|
||||
def librarian_rag(x):
|
||||
return get_docs_message(x["message"])
|
Reference in New Issue
Block a user