mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 21:12:48 +00:00
chroma docs (#1012)
This commit is contained in:
@@ -23,7 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 3,
|
||||
"id": "8244ff60",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -43,7 +43,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 4,
|
||||
"id": "7c469c95",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -54,7 +54,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 5,
|
||||
"id": "0ec6d950",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -71,7 +71,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 6,
|
||||
"id": "207e55f7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -105,7 +105,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 7,
|
||||
"id": "d00b4385",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -142,7 +142,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 8,
|
||||
"id": "878bcde9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -168,7 +168,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 9,
|
||||
"id": "e4bebcd9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -220,22 +220,31 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 10,
|
||||
"id": "241bfe80",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.example_selector import SemanticSimilarityExampleSelector\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 11,
|
||||
"id": "50d0a701",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Running Chroma using direct local API.\n",
|
||||
"Using DuckDB in-memory for database. Data will be transient.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"example_selector = SemanticSimilarityExampleSelector.from_examples(\n",
|
||||
" # This is the list of examples available to select from.\n",
|
||||
@@ -243,7 +252,7 @@
|
||||
" # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
|
||||
" OpenAIEmbeddings(), \n",
|
||||
" # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
|
||||
" FAISS, \n",
|
||||
" Chroma, \n",
|
||||
" # This is the number of examples to produce.\n",
|
||||
" k=1\n",
|
||||
")\n",
|
||||
@@ -259,7 +268,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 12,
|
||||
"id": "4c8fdf45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -284,7 +293,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 13,
|
||||
"id": "829af21a",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
@@ -311,7 +320,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 14,
|
||||
"id": "3c16fe23",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -347,17 +356,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"execution_count": 18,
|
||||
"id": "ac95c968",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector"
|
||||
"from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 19,
|
||||
"id": "db579bea",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -384,7 +394,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 20,
|
||||
"id": "cd76e344",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -412,7 +422,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 21,
|
||||
"id": "cf82956b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -422,9 +432,6 @@
|
||||
"text": [
|
||||
"Give the antonym of every input\n",
|
||||
"\n",
|
||||
"Input: happy\n",
|
||||
"Output: sad\n",
|
||||
"\n",
|
||||
"Input: enthusiastic\n",
|
||||
"Output: apathetic\n",
|
||||
"\n",
|
||||
@@ -696,7 +703,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@@ -242,6 +242,8 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Running Chroma using direct local API.\n",
|
||||
"Using DuckDB in-memory for database. Data will be transient.\n",
|
||||
"Examples most similar to the input: Who was the father of Mary Ball Washington?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -259,7 +261,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.prompts.example_selector import SemanticSimilarityExampleSelector\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -269,7 +271,7 @@
|
||||
" # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
|
||||
" OpenAIEmbeddings(),\n",
|
||||
" # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
|
||||
" FAISS,\n",
|
||||
" Chroma,\n",
|
||||
" # This is the number of examples to produce.\n",
|
||||
" k=1\n",
|
||||
")\n",
|
||||
@@ -328,6 +330,14 @@
|
||||
"\n",
|
||||
"print(prompt.format(input=\"Who was the father of Mary Ball Washington?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "84c43b97",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -346,7 +356,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.9.1"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
@@ -71,7 +71,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 3,
|
||||
"id": "094229f4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -81,7 +81,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"id": "ab46bd2a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -91,7 +91,7 @@
|
||||
"'Tell me a joke.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -104,7 +104,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"id": "c3ad0fa8",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -114,7 +114,7 @@
|
||||
"'Tell me a funny joke.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -127,7 +127,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 6,
|
||||
"id": "ba577dcf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -137,7 +137,7 @@
|
||||
"'Tell me a funny joke about chickens.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -162,7 +162,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 7,
|
||||
"id": "d0a0756c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -173,7 +173,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 8,
|
||||
"id": "59046640",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -183,7 +183,7 @@
|
||||
"PromptTemplate(input_variables=['adjective', 'content'], output_parser=None, template='Tell me a {adjective} joke about {content}.', template_format='f-string', validate_template=True)"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -204,7 +204,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 9,
|
||||
"id": "53b41b6a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -226,7 +226,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 10,
|
||||
"id": "ba8aabd3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -236,7 +236,7 @@
|
||||
"'\\n\\nQuestion: foo\\nAnswer: bar\\n\\nQuestion: 1\\nAnswer: 2\\n'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -261,7 +261,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 11,
|
||||
"id": "3eb36972",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -280,7 +280,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 12,
|
||||
"id": "80a91d96",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -290,7 +290,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 13,
|
||||
"id": "7931e5f2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -343,7 +343,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 14,
|
||||
"id": "e710115f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -353,7 +353,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 15,
|
||||
"id": "5bf23a65",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -374,7 +374,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 16,
|
||||
"id": "d4036351",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -428,7 +428,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 17,
|
||||
"id": "7c469c95",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -438,7 +438,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 18,
|
||||
"id": "0ec6d950",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -455,7 +455,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 19,
|
||||
"id": "207e55f7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -485,7 +485,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 20,
|
||||
"id": "d00b4385",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -522,7 +522,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 21,
|
||||
"id": "878bcde9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -548,7 +548,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 22,
|
||||
"id": "e4bebcd9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -600,22 +600,31 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 23,
|
||||
"id": "241bfe80",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.example_selector import SemanticSimilarityExampleSelector\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 24,
|
||||
"id": "50d0a701",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Running Chroma using direct local API.\n",
|
||||
"Using DuckDB in-memory for database. Data will be transient.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"example_selector = SemanticSimilarityExampleSelector.from_examples(\n",
|
||||
" # This is the list of examples available to select from.\n",
|
||||
@@ -623,7 +632,7 @@
|
||||
" # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
|
||||
" OpenAIEmbeddings(), \n",
|
||||
" # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
|
||||
" FAISS, \n",
|
||||
" Chroma, \n",
|
||||
" # This is the number of examples to produce.\n",
|
||||
" k=1\n",
|
||||
")\n",
|
||||
@@ -639,7 +648,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 25,
|
||||
"id": "4c8fdf45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -732,7 +741,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector"
|
||||
"from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -863,7 +873,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.9.1"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
Reference in New Issue
Block a user