mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-26 04:51:45 +00:00
[Experimental]: Async agenerate method ollama functions (#21682)
- **Description:** : Added Async method for Generate for OllamaFunctions which was missing and was raising errors for the users. - **Issue:** #21422
This commit is contained in:
parent
328d0c99f2
commit
7fcef2556c
@ -17,7 +17,10 @@ from typing import (
|
||||
)
|
||||
|
||||
from langchain_community.chat_models.ollama import ChatOllama
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import LanguageModelInput
|
||||
from langchain_core.messages import AIMessage, BaseMessage, ToolCall
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
@ -369,6 +372,86 @@ class OllamaFunctions(ChatOllama):
|
||||
generations=[ChatGeneration(message=response_message_with_functions)]
|
||||
)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
functions = kwargs.get("functions", [])
|
||||
if "functions" in kwargs:
|
||||
del kwargs["functions"]
|
||||
if "function_call" in kwargs:
|
||||
functions = [
|
||||
fn for fn in functions if fn["name"] == kwargs["function_call"]["name"]
|
||||
]
|
||||
if not functions:
|
||||
raise ValueError(
|
||||
"If `function_call` is specified, you must also pass a "
|
||||
"matching function in `functions`."
|
||||
)
|
||||
del kwargs["function_call"]
|
||||
elif not functions:
|
||||
functions.append(DEFAULT_RESPONSE_FUNCTION)
|
||||
if _is_pydantic_class(functions[0]):
|
||||
functions = [convert_to_ollama_tool(fn) for fn in functions]
|
||||
system_message_prompt_template = SystemMessagePromptTemplate.from_template(
|
||||
self.tool_system_prompt_template
|
||||
)
|
||||
system_message = system_message_prompt_template.format(
|
||||
tools=json.dumps(functions, indent=2)
|
||||
)
|
||||
response_message = await super()._agenerate(
|
||||
[system_message] + messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
chat_generation_content = response_message.generations[0].text
|
||||
if not isinstance(chat_generation_content, str):
|
||||
raise ValueError("OllamaFunctions does not support non-string output.")
|
||||
try:
|
||||
parsed_chat_result = json.loads(chat_generation_content)
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError(
|
||||
f"""'{self.model}' did not respond with valid JSON.
|
||||
Please try again.
|
||||
Response: {chat_generation_content}"""
|
||||
)
|
||||
called_tool_name = parsed_chat_result["tool"]
|
||||
called_tool_arguments = parsed_chat_result["tool_input"]
|
||||
called_tool = next(
|
||||
(fn for fn in functions if fn["name"] == called_tool_name), None
|
||||
)
|
||||
if called_tool is None:
|
||||
raise ValueError(
|
||||
f"Failed to parse a function call from {self.model} output: "
|
||||
f"{chat_generation_content}"
|
||||
)
|
||||
if called_tool["name"] == DEFAULT_RESPONSE_FUNCTION["name"]:
|
||||
return ChatResult(
|
||||
generations=[
|
||||
ChatGeneration(
|
||||
message=AIMessage(
|
||||
content=called_tool_arguments["response"],
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
response_message_with_functions = AIMessage(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"function_call": {
|
||||
"name": called_tool_name,
|
||||
"arguments": json.dumps(called_tool_arguments)
|
||||
if called_tool_arguments
|
||||
else "",
|
||||
},
|
||||
},
|
||||
)
|
||||
return ChatResult(
|
||||
generations=[ChatGeneration(message=response_message_with_functions)]
|
||||
)
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "ollama_functions"
|
||||
|
Loading…
Reference in New Issue
Block a user