openai[patch]: support streaming with json_schema response format (#29044)

- Stream JSON string content. Final chunk includes parsed representation
(following OpenAI
[docs](https://platform.openai.com/docs/guides/structured-outputs#streaming)).
- Mildly (?) breaking change: if you were using streaming with
`response_format` before, usage metadata will disappear unless you set
`stream_usage=True`.

## Response format

Before:

![Screenshot 2025-01-06 at 11 59
01 AM](https://github.com/user-attachments/assets/e54753f7-47d5-421d-b8f3-172f32b3364d)


After:

![Screenshot 2025-01-06 at 11 58
13 AM](https://github.com/user-attachments/assets/34882c6c-2284-45b4-92f7-5b5b69896903)


## with_structured_output

For pydantic output, behavior of `with_structured_output` is unchanged
(except for warning disappearing), because we pluck the parsed
representation straight from OpenAI, and OpenAI doesn't return it until
the stream is completed. Open to alternatives (e.g., parsing from
content or intermediate dict chunks generated by OpenAI).

Before:

![Screenshot 2025-01-06 at 12 38
11 PM](https://github.com/user-attachments/assets/913d320d-f49e-4cbb-a800-b394ae817fd1)

After:

![Screenshot 2025-01-06 at 12 38
58 PM](https://github.com/user-attachments/assets/f7a45dd6-d886-48a6-8d76-d0e21ca767c6)
This commit is contained in:
ccurme 2025-01-09 10:32:30 -05:00 committed by GitHub
parent 858f655a25
commit 815bfa1913
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 146 additions and 35 deletions

View File

@ -318,8 +318,14 @@ def _convert_delta_to_message_chunk(
def _convert_chunk_to_generation_chunk(
chunk: dict, default_chunk_class: Type, base_generation_info: Optional[Dict]
) -> Optional[ChatGenerationChunk]:
if chunk.get("type") == "content.delta": # from beta.chat.completions.stream
return None
token_usage = chunk.get("usage")
choices = chunk.get("choices", [])
choices = (
chunk.get("choices", [])
# from beta.chat.completions.stream
or chunk.get("chunk", {}).get("choices", [])
)
usage_metadata: Optional[UsageMetadata] = (
_create_usage_metadata(token_usage) if token_usage else None
@ -660,13 +666,24 @@ class BaseChatOpenAI(BaseChatModel):
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
base_generation_info = {}
if "response_format" in payload:
if self.include_response_headers:
warnings.warn(
"Cannot currently include response headers when response_format is "
"specified."
)
payload.pop("stream")
response_stream = self.root_client.beta.chat.completions.stream(**payload)
context_manager = response_stream
else:
if self.include_response_headers:
raw_response = self.client.with_raw_response.create(**payload)
response = raw_response.parse()
base_generation_info = {"headers": dict(raw_response.headers)}
else:
response = self.client.create(**payload)
with response:
context_manager = response
with context_manager as response:
is_first_chunk = True
for chunk in response:
if not isinstance(chunk, dict):
@ -686,6 +703,16 @@ class BaseChatOpenAI(BaseChatModel):
)
is_first_chunk = False
yield generation_chunk
if hasattr(response, "get_final_completion") and "response_format" in payload:
final_completion = response.get_final_completion()
generation_chunk = self._get_generation_chunk_from_completion(
final_completion
)
if run_manager:
run_manager.on_llm_new_token(
generation_chunk.text, chunk=generation_chunk
)
yield generation_chunk
def _generate(
self,
@ -794,13 +821,29 @@ class BaseChatOpenAI(BaseChatModel):
payload = self._get_request_payload(messages, stop=stop, **kwargs)
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
base_generation_info = {}
if "response_format" in payload:
if self.include_response_headers:
raw_response = await self.async_client.with_raw_response.create(**payload)
warnings.warn(
"Cannot currently include response headers when response_format is "
"specified."
)
payload.pop("stream")
response_stream = self.root_async_client.beta.chat.completions.stream(
**payload
)
context_manager = response_stream
else:
if self.include_response_headers:
raw_response = await self.async_client.with_raw_response.create(
**payload
)
response = raw_response.parse()
base_generation_info = {"headers": dict(raw_response.headers)}
else:
response = await self.async_client.create(**payload)
async with response:
context_manager = response
async with context_manager as response:
is_first_chunk = True
async for chunk in response:
if not isinstance(chunk, dict):
@ -820,6 +863,16 @@ class BaseChatOpenAI(BaseChatModel):
)
is_first_chunk = False
yield generation_chunk
if hasattr(response, "get_final_completion") and "response_format" in payload:
final_completion = await response.get_final_completion()
generation_chunk = self._get_generation_chunk_from_completion(
final_completion
)
if run_manager:
await run_manager.on_llm_new_token(
generation_chunk.text, chunk=generation_chunk
)
yield generation_chunk
async def _agenerate(
self,
@ -1010,25 +1063,6 @@ class BaseChatOpenAI(BaseChatModel):
num_tokens += 3
return num_tokens
def _should_stream(
self,
*,
async_api: bool,
run_manager: Optional[
Union[CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun]
] = None,
response_format: Optional[Union[dict, type]] = None,
**kwargs: Any,
) -> bool:
if isinstance(response_format, type) and is_basemodel_subclass(response_format):
# TODO: Add support for streaming with Pydantic response_format.
warnings.warn("Streaming with Pydantic response_format not yet supported.")
return False
return super()._should_stream(
async_api=async_api, run_manager=run_manager, **kwargs
)
@deprecated(
since="0.2.1",
alternative="langchain_openai.chat_models.base.ChatOpenAI.bind_tools",
@ -1531,6 +1565,25 @@ class BaseChatOpenAI(BaseChatModel):
filtered[k] = v
return filtered
def _get_generation_chunk_from_completion(
self, completion: openai.BaseModel
) -> ChatGenerationChunk:
"""Get chunk from completion (e.g., from final completion of a stream)."""
chat_result = self._create_chat_result(completion)
chat_message = chat_result.generations[0].message
if isinstance(chat_message, AIMessage):
usage_metadata = chat_message.usage_metadata
else:
usage_metadata = None
message = AIMessageChunk(
content="",
additional_kwargs=chat_message.additional_kwargs,
usage_metadata=usage_metadata,
)
return ChatGenerationChunk(
message=message, generation_info=chat_result.llm_output
)
class ChatOpenAI(BaseChatOpenAI): # type: ignore[override]
"""OpenAI chat model integration.

View File

@ -13,6 +13,7 @@ from langchain_core.messages import (
HumanMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult
from pydantic import BaseModel
from langchain_openai import AzureChatOpenAI
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
@ -262,3 +263,37 @@ async def test_json_mode_async(llm: AzureChatOpenAI) -> None:
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, str)
assert json.loads(full.content) == {"a": 1}
class Foo(BaseModel):
response: str
def test_stream_response_format(llm: AzureChatOpenAI) -> None:
full: Optional[BaseMessageChunk] = None
chunks = []
for chunk in llm.stream("how are ya", response_format=Foo):
chunks.append(chunk)
full = chunk if full is None else full + chunk
assert len(chunks) > 1
assert isinstance(full, AIMessageChunk)
parsed = full.additional_kwargs["parsed"]
assert isinstance(parsed, Foo)
assert isinstance(full.content, str)
parsed_content = json.loads(full.content)
assert parsed.response == parsed_content["response"]
async def test_astream_response_format(llm: AzureChatOpenAI) -> None:
full: Optional[BaseMessageChunk] = None
chunks = []
async for chunk in llm.astream("how are ya", response_format=Foo):
chunks.append(chunk)
full = chunk if full is None else full + chunk
assert len(chunks) > 1
assert isinstance(full, AIMessageChunk)
parsed = full.additional_kwargs["parsed"]
assert isinstance(parsed, Foo)
assert isinstance(full.content, str)
parsed_content = json.loads(full.content)
assert parsed.response == parsed_content["response"]

View File

@ -1092,14 +1092,37 @@ class Foo(BaseModel):
def test_stream_response_format() -> None:
list(ChatOpenAI(model="gpt-4o-mini").stream("how are ya", response_format=Foo))
full: Optional[BaseMessageChunk] = None
chunks = []
for chunk in ChatOpenAI(model="gpt-4o-mini").stream(
"how are ya", response_format=Foo
):
chunks.append(chunk)
full = chunk if full is None else full + chunk
assert len(chunks) > 1
assert isinstance(full, AIMessageChunk)
parsed = full.additional_kwargs["parsed"]
assert isinstance(parsed, Foo)
assert isinstance(full.content, str)
parsed_content = json.loads(full.content)
assert parsed.response == parsed_content["response"]
async def test_astream_response_format() -> None:
async for _ in ChatOpenAI(model="gpt-4o-mini").astream(
full: Optional[BaseMessageChunk] = None
chunks = []
async for chunk in ChatOpenAI(model="gpt-4o-mini").astream(
"how are ya", response_format=Foo
):
pass
chunks.append(chunk)
full = chunk if full is None else full + chunk
assert len(chunks) > 1
assert isinstance(full, AIMessageChunk)
parsed = full.additional_kwargs["parsed"]
assert isinstance(parsed, Foo)
assert isinstance(full.content, str)
parsed_content = json.loads(full.content)
assert parsed.response == parsed_content["response"]
@pytest.mark.parametrize("use_max_completion_tokens", [True, False])