mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 23:54:14 +00:00
Harrison/banana fix (#1311)
Co-authored-by: Erik Dunteman <44653944+erik-dunteman@users.noreply.github.com>
This commit is contained in:
parent
648b3b3909
commit
81abcae91a
@ -4,8 +4,9 @@ This page covers how to use the Banana ecosystem within LangChain.
|
|||||||
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
|
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
|
||||||
|
|
||||||
## Installation and Setup
|
## Installation and Setup
|
||||||
|
|
||||||
- Install with `pip3 install banana-dev`
|
- Install with `pip3 install banana-dev`
|
||||||
- Get an CerebriumAI api key and set it as an environment variable (`BANANA_API_KEY`)
|
- Get an Banana api key and set it as an environment variable (`BANANA_API_KEY`)
|
||||||
|
|
||||||
## Define your Banana Template
|
## Define your Banana Template
|
||||||
|
|
||||||
@ -15,13 +16,16 @@ You can check out an example Banana repository [here](https://github.com/concept
|
|||||||
|
|
||||||
## Build the Banana app
|
## Build the Banana app
|
||||||
|
|
||||||
You must include a output in the result. There is a rigid response structure.
|
Banana Apps must include the "output" key in the return json.
|
||||||
|
There is a rigid response structure.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Return the results as a dictionary
|
# Return the results as a dictionary
|
||||||
result = {'output': result}
|
result = {'output': result}
|
||||||
```
|
```
|
||||||
|
|
||||||
An example inference function would be:
|
An example inference function would be:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def inference(model_inputs:dict) -> dict:
|
def inference(model_inputs:dict) -> dict:
|
||||||
global model
|
global model
|
||||||
@ -58,17 +62,18 @@ def inference(model_inputs:dict) -> dict:
|
|||||||
|
|
||||||
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
|
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
|
||||||
|
|
||||||
|
|
||||||
## Wrappers
|
## Wrappers
|
||||||
|
|
||||||
### LLM
|
### LLM
|
||||||
|
|
||||||
There exists an Banana LLM wrapper, which you can access with
|
There exists an Banana LLM wrapper, which you can access with
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain.llms import Banana
|
from langchain.llms import Banana
|
||||||
```
|
```
|
||||||
|
|
||||||
You need to provide a model key located in the dashboard:
|
You need to provide a model key located in the dashboard:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
llm = Banana(model_key="YOUR_MODEL_KEY")
|
llm = Banana(model_key="YOUR_MODEL_KEY")
|
||||||
```
|
```
|
@ -100,10 +100,15 @@ class Banana(LLM, BaseModel):
|
|||||||
response = banana.run(api_key, model_key, model_inputs)
|
response = banana.run(api_key, model_key, model_inputs)
|
||||||
try:
|
try:
|
||||||
text = response["modelOutputs"][0]["output"]
|
text = response["modelOutputs"][0]["output"]
|
||||||
except KeyError:
|
except (KeyError, TypeError):
|
||||||
|
returned = response["modelOutputs"][0]
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Response should be {'modelOutputs': [{'output': 'text'}]}."
|
"Response should be of schema: {'output': 'text'}."
|
||||||
f"Response was: {response}"
|
f"\nResponse was: {returned}"
|
||||||
|
"\nTo fix this:"
|
||||||
|
"\n- fork the source repo of the Banana model"
|
||||||
|
"\n- modify app.py to return the above schema"
|
||||||
|
"\n- deploy that as a custom repo"
|
||||||
)
|
)
|
||||||
if stop is not None:
|
if stop is not None:
|
||||||
# I believe this is required since the stop tokens
|
# I believe this is required since the stop tokens
|
||||||
|
Loading…
Reference in New Issue
Block a user