mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-25 08:03:39 +00:00
docs: Fix typo in Generating Examples section of few-shot prompting doc (#30219)
Thank you for contributing to LangChain! - [ ] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [ ] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** a description of the change - **Issue:** the issue # it fixes, if applicable - **Dependencies:** any dependencies required for this change - **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out! - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
This commit is contained in:
parent
27d86d7bc8
commit
81d1653a30
@ -30,7 +30,7 @@ At a high-level, the basic ways to generate examples are:
|
||||
- User feedback: users (or labelers) leave feedback on interactions with the application and examples are generated based on that feedback (for example, all interactions with positive feedback could be turned into examples).
|
||||
- LLM feedback: same as user feedback but the process is automated by having models evaluate themselves.
|
||||
|
||||
Which approach is best depends on your task. For tasks where a small number core principles need to be understood really well, it can be valuable hand-craft a few really good examples.
|
||||
Which approach is best depends on your task. For tasks where a small number of core principles need to be understood really well, it can be valuable hand-craft a few really good examples.
|
||||
For tasks where the space of correct behaviors is broader and more nuanced, it can be useful to generate many examples in a more automated fashion so that there's a higher likelihood of there being some highly relevant examples for any runtime input.
|
||||
|
||||
**Single-turn v.s. multi-turn examples**
|
||||
@ -39,8 +39,8 @@ Another dimension to think about when generating examples is what the example is
|
||||
|
||||
The simplest types of examples just have a user input and an expected model output. These are single-turn examples.
|
||||
|
||||
One more complex type if example is where the example is an entire conversation, usually in which a model initially responds incorrectly and a user then tells the model how to correct its answer.
|
||||
This is called a multi-turn example. Multi-turn examples can be useful for more nuanced tasks where its useful to show common errors and spell out exactly why they're wrong and what should be done instead.
|
||||
One more complex type of example is where the example is an entire conversation, usually in which a model initially responds incorrectly and a user then tells the model how to correct its answer.
|
||||
This is called a multi-turn example. Multi-turn examples can be useful for more nuanced tasks where it's useful to show common errors and spell out exactly why they're wrong and what should be done instead.
|
||||
|
||||
## 2. Number of examples
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user