mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-29 09:58:44 +00:00
docs: replace deprecated initialize_agent
with create_react_agent
and non-deprecated functions (#31361)
**Description:** This PR updates approximately 4' occurences of the deprecated `initialize_agent` function in LangChain documentation and examples, replacing it with the recommended `create_react_agent` and pattern. It also refactors related examples to align with current best practices. **Issue:** Partially Fixes #29277 **Dependencies:** None **X handle:** @TK1475 --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This commit is contained in:
parent
4ec46aeb73
commit
81db124351
@ -22,16 +22,16 @@ You can use it as part of a Self Ask chain:
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.utilities import GoogleSerperAPIWrapper
|
from langchain_community.utilities import GoogleSerperAPIWrapper
|
||||||
from langchain_openai import OpenAI
|
from langchain_core.tools import Tool
|
||||||
from langchain.agents import initialize_agent, Tool
|
from langchain_openai import ChatOpenAI
|
||||||
from langchain.agents import AgentType
|
from langgraph.prebuilt import create_react_agent
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
os.environ["SERPER_API_KEY"] = ""
|
os.environ["SERPER_API_KEY"] = ""
|
||||||
os.environ['OPENAI_API_KEY'] = ""
|
os.environ['OPENAI_API_KEY'] = ""
|
||||||
|
|
||||||
llm = OpenAI(temperature=0)
|
llm = ChatOpenAI(temperature=0)
|
||||||
search = GoogleSerperAPIWrapper()
|
search = GoogleSerperAPIWrapper()
|
||||||
tools = [
|
tools = [
|
||||||
Tool(
|
Tool(
|
||||||
@ -41,8 +41,13 @@ tools = [
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
|
agent = create_react_agent(llm, tools)
|
||||||
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
|
|
||||||
|
result = agent.invoke({
|
||||||
|
"messages": [("human", "What is the hometown of the reigning men's U.S. Open champion?")]
|
||||||
|
})
|
||||||
|
|
||||||
|
print(result)
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Output
|
#### Output
|
||||||
|
@ -22,13 +22,12 @@ You can use it as part of a Self Ask chain:
|
|||||||
```python
|
```python
|
||||||
from langchain_community.utilities import SearchApiAPIWrapper
|
from langchain_community.utilities import SearchApiAPIWrapper
|
||||||
from langchain_openai import OpenAI
|
from langchain_openai import OpenAI
|
||||||
from langchain.agents import initialize_agent, Tool
|
from langchain.agents import Tool, create_openai_functions_agent, AgentExecutor
|
||||||
from langchain.agents import AgentType
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
os.environ["SEARCHAPI_API_KEY"] = ""
|
os.environ["SEARCHAPI_API_KEY"] = "<your-searchapi-key>"
|
||||||
os.environ['OPENAI_API_KEY'] = ""
|
os.environ['OPENAI_API_KEY'] = "<your-openai-key>"
|
||||||
|
|
||||||
llm = OpenAI(temperature=0)
|
llm = OpenAI(temperature=0)
|
||||||
search = SearchApiAPIWrapper()
|
search = SearchApiAPIWrapper()
|
||||||
@ -40,8 +39,13 @@ tools = [
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
|
# Create agent and executor
|
||||||
self_ask_with_search.run("Who lived longer: Plato, Socrates, or Aristotle?")
|
agent = create_openai_functions_agent(llm=llm, tools=tools)
|
||||||
|
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
||||||
|
|
||||||
|
# Run the agent
|
||||||
|
response = agent_executor.invoke({"input": "Who lived longer: Plato, Socrates, or Aristotle?"})
|
||||||
|
print(response["output"])
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Output
|
#### Output
|
||||||
|
@ -52,18 +52,18 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": null,
|
||||||
"id": "d41405b5",
|
"id": "d41405b5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from langchain.agents import AgentType, initialize_agent, load_tools\n",
|
"from langchain.agents import AgentExecutor, create_react_agent, load_tools\n",
|
||||||
"from langchain_openai import ChatOpenAI"
|
"from langchain_openai import ChatOpenAI"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": null,
|
||||||
"id": "d9e61df5",
|
"id": "d9e61df5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -73,7 +73,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": null,
|
||||||
"id": "edc0ea0e",
|
"id": "edc0ea0e",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@ -113,13 +113,15 @@
|
|||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"llm = ChatOpenAI(temperature=0)\n",
|
"llm = ChatOpenAI(temperature=0)\n",
|
||||||
|
"\n",
|
||||||
"tools = load_tools([\"requests_all\"])\n",
|
"tools = load_tools([\"requests_all\"])\n",
|
||||||
"tools += [tool]\n",
|
"tools += [tool]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"agent_chain = initialize_agent(\n",
|
"agent = create_react_agent(llm=llm, tools=tools)\n",
|
||||||
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
|
"\n",
|
||||||
")\n",
|
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
|
||||||
"agent_chain.run(\"what t shirts are available in klarna?\")"
|
"\n",
|
||||||
|
"agent_executor.invoke({\"input\": \"what t shirts are available in klarna?\"})"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -133,7 +135,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3 (ipykernel)",
|
"display_name": "AI_env",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@ -147,7 +149,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.10.12"
|
"version": "3.12.2"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
@ -32,6 +32,19 @@
|
|||||||
"%pip install -qU langchain-community"
|
"%pip install -qU langchain-community"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "cf0cb2e5",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain_community.agent_toolkits.nasa.toolkit import NasaToolkit\n",
|
||||||
|
"from langchain_community.utilities.nasa import NasaAPIWrapper\n",
|
||||||
|
"from langchain_openai import OpenAI\n",
|
||||||
|
"from langgraph.prebuilt import create_react_agent"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@ -39,17 +52,12 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from langchain.agents import AgentType, initialize_agent\n",
|
|
||||||
"from langchain_community.agent_toolkits.nasa.toolkit import NasaToolkit\n",
|
|
||||||
"from langchain_community.utilities.nasa import NasaAPIWrapper\n",
|
|
||||||
"from langchain_openai import OpenAI\n",
|
|
||||||
"\n",
|
|
||||||
"llm = OpenAI(temperature=0, openai_api_key=\"\")\n",
|
"llm = OpenAI(temperature=0, openai_api_key=\"\")\n",
|
||||||
"nasa = NasaAPIWrapper()\n",
|
"nasa = NasaAPIWrapper()\n",
|
||||||
"toolkit = NasaToolkit.from_nasa_api_wrapper(nasa)\n",
|
"toolkit = NasaToolkit.from_nasa_api_wrapper(nasa)\n",
|
||||||
"agent = initialize_agent(\n",
|
"tools = toolkit.get_tools()\n",
|
||||||
" toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
|
"\n",
|
||||||
")"
|
"agent = create_react_agent(llm, tools)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -96,7 +104,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3 (ipykernel)",
|
"display_name": "AI_env",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@ -110,7 +118,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.5"
|
"version": "3.12.2"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
Loading…
Reference in New Issue
Block a user