mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 22:42:05 +00:00
community: add InfinityRerank (#27043)
**Description:** - Add a Reranker for Infinity server. **Dependencies:** This wrapper uses [infinity_client](https://github.com/michaelfeil/infinity/tree/main/libs/client_infinity/infinity_client) to connect to an Infinity server. **Tests and docs** - integration test: test_infinity_rerank.py - example notebook: infinity_rerank.ipynb [here](https://github.com/baptiste-pasquier/langchain/blob/feat/infinity-rerank/docs/docs/integrations/document_transformers/infinity_rerank.ipynb) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
committed by
GitHub
parent
2494deb2a4
commit
81f7daa458
@@ -8,6 +8,9 @@ if TYPE_CHECKING:
|
||||
from langchain_community.document_compressors.flashrank_rerank import (
|
||||
FlashrankRerank,
|
||||
)
|
||||
from langchain_community.document_compressors.infinity_rerank import (
|
||||
InfinityRerank,
|
||||
)
|
||||
from langchain_community.document_compressors.jina_rerank import (
|
||||
JinaRerank,
|
||||
)
|
||||
@@ -32,6 +35,7 @@ _module_lookup = {
|
||||
"FlashrankRerank": "langchain_community.document_compressors.flashrank_rerank",
|
||||
"DashScopeRerank": "langchain_community.document_compressors.dashscope_rerank",
|
||||
"VolcengineRerank": "langchain_community.document_compressors.volcengine_rerank",
|
||||
"InfinityRerank": "langchain_community.document_compressors.infinity_rerank",
|
||||
}
|
||||
|
||||
|
||||
@@ -50,4 +54,5 @@ __all__ = [
|
||||
"RankLLMRerank",
|
||||
"DashScopeRerank",
|
||||
"VolcengineRerank",
|
||||
"InfinityRerank",
|
||||
]
|
||||
|
@@ -0,0 +1,135 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from copy import deepcopy
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
|
||||
|
||||
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
|
||||
from langchain_core.callbacks.manager import Callbacks
|
||||
from langchain_core.documents import Document
|
||||
from pydantic import ConfigDict, model_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from infinity_client.api.default import rerank
|
||||
from infinity_client.client import Client
|
||||
from infinity_client.models import RerankInput
|
||||
else:
|
||||
# Avoid pydantic annotation issues when actually instantiating
|
||||
# while keeping this import optional
|
||||
try:
|
||||
from infinity_client.api.default import rerank
|
||||
from infinity_client.client import Client
|
||||
from infinity_client.models import RerankInput
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
DEFAULT_MODEL_NAME = "BAAI/bge-reranker-base"
|
||||
DEFAULT_BASE_URL = "http://localhost:7997"
|
||||
|
||||
|
||||
class InfinityRerank(BaseDocumentCompressor):
|
||||
"""Document compressor that uses `Infinity Rerank API`."""
|
||||
|
||||
client: Optional[Client] = None
|
||||
"""Infinity client to use for compressing documents."""
|
||||
|
||||
model: Optional[str] = None
|
||||
"""Model to use for reranking."""
|
||||
|
||||
top_n: Optional[int] = 3
|
||||
"""Number of documents to return."""
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
arbitrary_types_allowed=True,
|
||||
extra="forbid",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_environment(cls, values: Dict) -> Any:
|
||||
"""Validate that python package exists in environment."""
|
||||
if "client" in values:
|
||||
return values
|
||||
else:
|
||||
try:
|
||||
from infinity_client.client import Client
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import infinity_client python package. "
|
||||
"Please install it with `pip install infinity_client`."
|
||||
)
|
||||
|
||||
values["model"] = values.get("model", DEFAULT_MODEL_NAME)
|
||||
values["client"] = Client(base_url=DEFAULT_BASE_URL)
|
||||
return values
|
||||
|
||||
def rerank(
|
||||
self,
|
||||
documents: Sequence[Union[str, Document, dict]],
|
||||
query: str,
|
||||
*,
|
||||
model: Optional[str] = None,
|
||||
top_n: Optional[int] = -1,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Returns an ordered list of documents ordered by their relevance to the provided query.
|
||||
|
||||
Args:
|
||||
query: The query to use for reranking.
|
||||
documents: A sequence of documents to rerank.
|
||||
model: The model to use for re-ranking. Default to self.model.
|
||||
top_n : The number of results to return. If None returns all results.
|
||||
Defaults to self.top_n.
|
||||
max_chunks_per_doc : The maximum number of chunks derived from a document.
|
||||
""" # noqa: E501
|
||||
if len(documents) == 0: # to avoid empty api call
|
||||
return []
|
||||
docs = [
|
||||
doc.page_content if isinstance(doc, Document) else doc for doc in documents
|
||||
]
|
||||
model = model or self.model
|
||||
|
||||
input = RerankInput(
|
||||
query=query,
|
||||
documents=docs,
|
||||
model=model,
|
||||
)
|
||||
results = rerank.sync(client=self.client, body=input)
|
||||
|
||||
if hasattr(results, "results"):
|
||||
results = getattr(results, "results")
|
||||
|
||||
result_dicts = []
|
||||
for res in results:
|
||||
result_dicts.append(
|
||||
{"index": res.index, "relevance_score": res.relevance_score}
|
||||
)
|
||||
|
||||
result_dicts.sort(key=lambda x: x["relevance_score"], reverse=True)
|
||||
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
|
||||
|
||||
return result_dicts[:top_n]
|
||||
|
||||
def compress_documents(
|
||||
self,
|
||||
documents: Sequence[Document],
|
||||
query: str,
|
||||
callbacks: Optional[Callbacks] = None,
|
||||
) -> Sequence[Document]:
|
||||
"""
|
||||
Compress documents using Infinity's rerank API.
|
||||
|
||||
Args:
|
||||
documents: A sequence of documents to compress.
|
||||
query: The query to use for compressing the documents.
|
||||
callbacks: Callbacks to run during the compression process.
|
||||
|
||||
Returns:
|
||||
A sequence of compressed documents.
|
||||
"""
|
||||
compressed = []
|
||||
for res in self.rerank(documents, query):
|
||||
doc = documents[res["index"]]
|
||||
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
||||
doc_copy.metadata["relevance_score"] = res["relevance_score"]
|
||||
compressed.append(doc_copy)
|
||||
return compressed
|
@@ -0,0 +1,32 @@
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.document_compressors.infinity_rerank import (
|
||||
InfinityRerank,
|
||||
)
|
||||
|
||||
|
||||
def test_rerank() -> None:
|
||||
reranker = InfinityRerank()
|
||||
docs = [
|
||||
Document(
|
||||
page_content=(
|
||||
"This is a document not related to the python package infinity_emb, "
|
||||
"hence..."
|
||||
)
|
||||
),
|
||||
Document(page_content="Paris is in France!"),
|
||||
Document(
|
||||
page_content=(
|
||||
"infinity_emb is a package for sentence embeddings and rerankings using"
|
||||
" transformer models in Python!"
|
||||
)
|
||||
),
|
||||
Document(page_content="random text for nothing"),
|
||||
]
|
||||
compressed = reranker.compress_documents(
|
||||
query="What is the python package infinity_emb?",
|
||||
documents=docs,
|
||||
)
|
||||
|
||||
assert len(compressed) == 3, "default top_n is 3"
|
||||
assert compressed[0].page_content == docs[2].page_content, "rerank works"
|
@@ -8,6 +8,7 @@ EXPECTED_ALL = [
|
||||
"FlashrankRerank",
|
||||
"DashScopeRerank",
|
||||
"VolcengineRerank",
|
||||
"InfinityRerank",
|
||||
]
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user