mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-27 06:18:05 +00:00
community[patch]: assign missed default (#26326)
Assigning missed defaults in various classes. Most clients were being assigned during the `model_validator(mode="before")` step, so this change should amount to a no-op in those cases. --- This PR was autogenerated using gritql ```shell grit apply 'class_definition(name=$C, $body, superclasses=$S) where { $C <: ! "Config", // Does not work in this scope, but works after class_definition $body <: block($statements), $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where { or { $y <: `Field($z)`, $x <: "model_config" } }, // And has either Any or Optional fields without a default $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where { $t <: or { r"Optional.*", r"Any", r"Union[None, .*]", r"Union[.*, None, .*]", r"Union[.*, None]", }, $y <: ., // Match empty node $t => `$t = None`, }, } ' --language python . ```
This commit is contained in:
@@ -30,7 +30,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
|
||||
"""Chain interacts with an OpenAPI endpoint using natural language."""
|
||||
|
||||
api_request_chain: LLMChain
|
||||
api_response_chain: Optional[LLMChain]
|
||||
api_response_chain: Optional[LLMChain] = None
|
||||
api_operation: APIOperation
|
||||
requests: Requests = Field(exclude=True, default_factory=Requests)
|
||||
param_mapping: _ParamMapping = Field(alias="param_mapping")
|
||||
|
@@ -346,7 +346,7 @@ class QianfanChatEndpoint(BaseChatModel):
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""extra params for model invoke using with `do`."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
# It could be empty due to the use of Console API
|
||||
# And they're not list here
|
||||
|
@@ -171,7 +171,7 @@ class JinaChat(BaseChatModel):
|
||||
"""Return whether this model can be serialized by Langchain."""
|
||||
return False
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
temperature: float = 0.7
|
||||
"""What sampling temperature to use."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
@@ -215,7 +215,7 @@ def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
class ChatLiteLLM(BaseChatModel):
|
||||
"""Chat model that uses the LiteLLM API."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model: str = "gpt-3.5-turbo"
|
||||
model_name: Optional[str] = None
|
||||
"""Model name to use."""
|
||||
|
@@ -67,7 +67,7 @@ class ChatLlamaCpp(BaseChatModel):
|
||||
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
model_path: str
|
||||
"""The path to the Llama model file."""
|
||||
|
@@ -369,7 +369,7 @@ class MiniMaxChat(BaseChatModel):
|
||||
**self.model_kwargs,
|
||||
}
|
||||
|
||||
_client: Any
|
||||
_client: Any = None
|
||||
model: str = "abab6.5-chat"
|
||||
"""Model name to use."""
|
||||
max_tokens: int = 256
|
||||
|
@@ -305,7 +305,7 @@ class ChatPremAI(BaseChatModel, BaseModel):
|
||||
streaming: Optional[bool] = False
|
||||
"""Whether to stream the responses or not."""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
|
@@ -434,7 +434,7 @@ class ChatTongyi(BaseChatModel):
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_name: str = Field(default="qwen-turbo", alias="model")
|
||||
"""Model name to use.
|
||||
callable multimodal model:
|
||||
|
@@ -76,7 +76,7 @@ class ChatYuan2(BaseChatModel):
|
||||
chat = ChatYuan2()
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||
|
||||
model_name: str = Field(default="yuan2", alias="model")
|
||||
|
@@ -23,7 +23,7 @@ class HuggingFaceCrossEncoder(BaseModel, BaseCrossEncoder):
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_name: str = DEFAULT_MODEL_NAME
|
||||
"""Model name to use."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
@@ -61,7 +61,7 @@ class SagemakerEndpointCrossEncoder(BaseModel, BaseCrossEncoder):
|
||||
credentials_profile_name=credentials_profile_name
|
||||
)
|
||||
"""
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
endpoint_name: str = ""
|
||||
"""The name of the endpoint from the deployed Sagemaker model.
|
||||
|
@@ -49,7 +49,7 @@ class LLMLinguaCompressor(BaseDocumentCompressor):
|
||||
"dynamic_context_compression_ratio": 0.4,
|
||||
}
|
||||
"""Extra compression arguments"""
|
||||
lingua: Any
|
||||
lingua: Any = None
|
||||
"""The instance of the llm linqua"""
|
||||
|
||||
@model_validator(mode="before")
|
||||
|
@@ -21,9 +21,9 @@ class OpenVINOReranker(BaseDocumentCompressor):
|
||||
OpenVINO rerank models.
|
||||
"""
|
||||
|
||||
ov_model: Any
|
||||
ov_model: Any = None
|
||||
"""OpenVINO model object."""
|
||||
tokenizer: Any
|
||||
tokenizer: Any = None
|
||||
"""Tokenizer for embedding model."""
|
||||
model_name_or_path: str
|
||||
"""HuggingFace model id."""
|
||||
|
@@ -59,7 +59,7 @@ class BaichuanTextEmbeddings(BaseModel, Embeddings):
|
||||
vectors = embeddings.embed_query(text)
|
||||
""" # noqa: E501
|
||||
|
||||
session: Any #: :meta private:
|
||||
session: Any = None #: :meta private:
|
||||
model_name: str = Field(default="Baichuan-Text-Embedding", alias="model")
|
||||
"""The model used to embed the documents."""
|
||||
baichuan_api_key: SecretStr = Field(
|
||||
|
@@ -71,7 +71,7 @@ class QianfanEmbeddingsEndpoint(BaseModel, Embeddings):
|
||||
endpoint: str = ""
|
||||
"""Endpoint of the Qianfan Embedding, required if custom model used."""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
"""Qianfan client"""
|
||||
|
||||
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
@@ -47,7 +47,7 @@ class BedrockEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
"""Bedrock client."""
|
||||
region_name: Optional[str] = None
|
||||
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
|
||||
|
@@ -30,9 +30,9 @@ class CohereEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
"""Cohere client."""
|
||||
async_client: Any #: :meta private:
|
||||
async_client: Any = None #: :meta private:
|
||||
"""Cohere async client."""
|
||||
model: str = "embed-english-v2.0"
|
||||
"""Model name to use."""
|
||||
|
@@ -101,7 +101,7 @@ class DashScopeEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
"""The DashScope client."""
|
||||
model: str = "text-embedding-v1"
|
||||
dashscope_api_key: Optional[str] = None
|
||||
|
@@ -38,12 +38,12 @@ class FastEmbedEmbeddings(BaseModel, Embeddings):
|
||||
Unknown behavior for values > 512.
|
||||
"""
|
||||
|
||||
cache_dir: Optional[str]
|
||||
cache_dir: Optional[str] = None
|
||||
"""The path to the cache directory.
|
||||
Defaults to `local_cache` in the parent directory
|
||||
"""
|
||||
|
||||
threads: Optional[int]
|
||||
threads: Optional[int] = None
|
||||
"""The number of threads single onnxruntime session can use.
|
||||
Defaults to None
|
||||
"""
|
||||
@@ -65,7 +65,7 @@ class FastEmbedEmbeddings(BaseModel, Embeddings):
|
||||
Defaults to `None`.
|
||||
"""
|
||||
|
||||
_model: Any # : :meta private:
|
||||
_model: Any = None # : :meta private:
|
||||
|
||||
model_config = ConfigDict(extra="allow", protected_namespaces=())
|
||||
|
||||
|
@@ -49,7 +49,7 @@ class IpexLLMBgeEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_name: str = DEFAULT_BGE_MODEL
|
||||
"""Model name to use."""
|
||||
cache_folder: Optional[str] = None
|
||||
|
@@ -27,7 +27,7 @@ class LaserEmbeddings(BaseModel, Embeddings):
|
||||
embeddings = encoder.encode_sentences(["Hello", "World"])
|
||||
"""
|
||||
|
||||
lang: Optional[str]
|
||||
lang: Optional[str] = None
|
||||
"""The language or language code you'd like to use
|
||||
If empty, this implementation will default
|
||||
to using a multilingual earlier LASER encoder model (called laser2)
|
||||
@@ -35,7 +35,7 @@ class LaserEmbeddings(BaseModel, Embeddings):
|
||||
https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200
|
||||
"""
|
||||
|
||||
_encoder_pipeline: Any # : :meta private:
|
||||
_encoder_pipeline: Any = None # : :meta private:
|
||||
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
|
@@ -19,7 +19,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_path: str
|
||||
|
||||
n_ctx: int = Field(512, alias="n_ctx")
|
||||
|
@@ -141,7 +141,7 @@ class LocalAIEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model: str = "text-embedding-ada-002"
|
||||
deployment: str = model
|
||||
openai_api_version: Optional[str] = None
|
||||
|
@@ -17,7 +17,7 @@ class ModelScopeEmbeddings(BaseModel, Embeddings):
|
||||
embed = ModelScopeEmbeddings(model_id=model_id, model_revision="v1.0.0")
|
||||
"""
|
||||
|
||||
embed: Any
|
||||
embed: Any = None
|
||||
model_id: str = "damo/nlp_corom_sentence-embedding_english-base"
|
||||
"""Model name to use."""
|
||||
model_revision: Optional[str] = None
|
||||
|
@@ -31,9 +31,9 @@ class OpenVINOEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
"""
|
||||
|
||||
ov_model: Any
|
||||
ov_model: Any = None
|
||||
"""OpenVINO model object."""
|
||||
tokenizer: Any
|
||||
tokenizer: Any = None
|
||||
"""Tokenizer for embedding model."""
|
||||
model_name_or_path: str
|
||||
"""HuggingFace model id."""
|
||||
|
@@ -28,7 +28,7 @@ class OracleEmbeddings(BaseModel, Embeddings):
|
||||
"""Get Embeddings"""
|
||||
|
||||
"""Oracle Connection"""
|
||||
conn: Any
|
||||
conn: Any = None
|
||||
"""Embedding Parameters"""
|
||||
params: Dict[str, Any]
|
||||
"""Proxy"""
|
||||
|
@@ -19,7 +19,7 @@ class TensorflowHubEmbeddings(BaseModel, Embeddings):
|
||||
tf = TensorflowHubEmbeddings(model_url=url)
|
||||
"""
|
||||
|
||||
embed: Any #: :meta private:
|
||||
embed: Any = None #: :meta private:
|
||||
model_url: str = DEFAULT_MODEL_URL
|
||||
"""Model name to use."""
|
||||
|
||||
|
@@ -25,7 +25,7 @@ class AlephAlpha(LLM):
|
||||
aleph_alpha = AlephAlpha(aleph_alpha_api_key="my-api-key")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model: Optional[str] = "luminous-base"
|
||||
"""Model name to use."""
|
||||
|
||||
|
@@ -156,7 +156,7 @@ class Aphrodite(BaseLLM):
|
||||
"""Holds any model parameters valid for `aphrodite.LLM` call not explicitly
|
||||
specified."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
@pre_init
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
|
@@ -123,7 +123,7 @@ class QianfanLLMEndpoint(LLM):
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""extra params for model invoke using with `do`."""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
|
||||
qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key")
|
||||
qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key")
|
||||
|
@@ -76,8 +76,8 @@ def acompletion_with_retry(llm: Cohere, **kwargs: Any) -> Any:
|
||||
class BaseCohere(Serializable):
|
||||
"""Base class for Cohere models."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
async_client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
async_client: Any = None #: :meta private:
|
||||
model: Optional[str] = Field(default=None)
|
||||
"""Model name to use."""
|
||||
|
||||
|
@@ -41,9 +41,9 @@ class CTranslate2(BaseLLM):
|
||||
sampling_temperature: float = 1
|
||||
"""Sampling temperature to generate more random samples."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
tokenizer: Any #: :meta private:
|
||||
tokenizer: Any = None #: :meta private:
|
||||
|
||||
ctranslate2_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""
|
||||
|
@@ -30,7 +30,7 @@ class ExLlamaV2(LLM):
|
||||
- Add support for custom stop sequences
|
||||
"""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
model_path: str
|
||||
exllama_cache: Any = None
|
||||
config: Any = None
|
||||
|
@@ -30,7 +30,7 @@ class GooseAI(LLM):
|
||||
|
||||
"""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
|
||||
model_name: str = "gpt-neo-20b"
|
||||
"""Model name to use"""
|
||||
|
@@ -60,7 +60,7 @@ class HuggingFacePipeline(BaseLLM):
|
||||
hf = HuggingFacePipeline(pipeline=pipe)
|
||||
"""
|
||||
|
||||
pipeline: Any #: :meta private:
|
||||
pipeline: Any = None #: :meta private:
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
"""Model name to use."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
|
@@ -100,8 +100,8 @@ class HuggingFaceTextGenInference(LLM):
|
||||
"""Holds any text-generation-inference server parameters not explicitly specified"""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `call` not explicitly specified"""
|
||||
client: Any
|
||||
async_client: Any
|
||||
client: Any = None
|
||||
async_client: Any = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
|
@@ -25,9 +25,9 @@ class IpexLLM(LLM):
|
||||
"""Model name or model path to use."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments passed to the model."""
|
||||
model: Any #: :meta private:
|
||||
model: Any = None #: :meta private:
|
||||
"""IpexLLM model."""
|
||||
tokenizer: Any #: :meta private:
|
||||
tokenizer: Any = None #: :meta private:
|
||||
"""Huggingface tokenizer model."""
|
||||
streaming: bool = True
|
||||
"""Whether to stream the results, token by token."""
|
||||
|
@@ -28,7 +28,7 @@ class LlamaCpp(LLM):
|
||||
llm = LlamaCpp(model_path="/path/to/llama/model")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_path: str
|
||||
"""The path to the Llama model file."""
|
||||
|
||||
|
@@ -9,7 +9,7 @@ from pydantic import ConfigDict
|
||||
class ManifestWrapper(LLM):
|
||||
"""HazyResearch's Manifest library."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
llm_kwargs: Optional[Dict] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -38,9 +38,9 @@ class MLXPipeline(LLM):
|
||||
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
"""Model name to use."""
|
||||
model: Any #: :meta private:
|
||||
model: Any = None #: :meta private:
|
||||
"""Model."""
|
||||
tokenizer: Any #: :meta private:
|
||||
tokenizer: Any = None #: :meta private:
|
||||
"""Tokenizer."""
|
||||
tokenizer_config: Optional[dict] = None
|
||||
"""
|
||||
|
@@ -19,7 +19,7 @@ class NLPCloud(LLM):
|
||||
nlpcloud = NLPCloud(model="finetuned-gpt-neox-20b")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_name: str = "finetuned-gpt-neox-20b"
|
||||
"""Model name to use."""
|
||||
gpu: bool = True
|
||||
|
@@ -29,10 +29,10 @@ class Petals(LLM):
|
||||
|
||||
"""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
"""The client to use for the API calls."""
|
||||
|
||||
tokenizer: Any
|
||||
tokenizer: Any = None
|
||||
"""The tokenizer to use for the API calls."""
|
||||
|
||||
model_name: str = "bigscience/bloom-petals"
|
||||
|
@@ -30,7 +30,7 @@ class PredictionGuard(LLM):
|
||||
})
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model: Optional[str] = "MPT-7B-Instruct"
|
||||
"""Model name to use."""
|
||||
|
||||
|
@@ -126,11 +126,11 @@ class SelfHostedPipeline(LLM):
|
||||
)
|
||||
"""
|
||||
|
||||
pipeline_ref: Any #: :meta private:
|
||||
client: Any #: :meta private:
|
||||
pipeline_ref: Any = None #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
inference_fn: Callable = _generate_text #: :meta private:
|
||||
"""Inference function to send to the remote hardware."""
|
||||
hardware: Any
|
||||
hardware: Any = None
|
||||
"""Remote hardware to send the inference function to."""
|
||||
model_load_fn: Callable
|
||||
"""Function to load the model remotely on the server."""
|
||||
|
@@ -160,7 +160,7 @@ class SelfHostedHuggingFaceLLM(SelfHostedPipeline):
|
||||
"""Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments to pass to the model."""
|
||||
hardware: Any
|
||||
hardware: Any = None
|
||||
"""Remote hardware to send the inference function to."""
|
||||
model_reqs: List[str] = ["./", "transformers", "torch"]
|
||||
"""Requirements to install on hardware to inference the model."""
|
||||
|
@@ -238,7 +238,7 @@ class Tongyi(BaseLLM):
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_name: str = Field(default="qwen-plus", alias="model")
|
||||
|
||||
"""Model name to use."""
|
||||
|
@@ -72,7 +72,7 @@ class VLLM(BaseLLM):
|
||||
vllm_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `vllm.LLM` call not explicitly specified."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
@pre_init
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
|
@@ -12,7 +12,7 @@ from pydantic import BaseModel, Field, SecretStr
|
||||
class VolcEngineMaasBase(BaseModel):
|
||||
"""Base class for VolcEngineMaas models."""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
|
||||
volc_engine_maas_ak: Optional[SecretStr] = None
|
||||
"""access key for volc engine"""
|
||||
|
@@ -93,7 +93,7 @@ class WatsonxLLM(BaseLLM):
|
||||
streaming: bool = False
|
||||
""" Whether to stream the results or not. """
|
||||
|
||||
watsonx_model: Any
|
||||
watsonx_model: Any = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
|
@@ -62,7 +62,7 @@ class WeightOnlyQuantPipeline(LLM):
|
||||
hf = WeightOnlyQuantPipeline(pipeline=pipe)
|
||||
"""
|
||||
|
||||
pipeline: Any #: :meta private:
|
||||
pipeline: Any = None #: :meta private:
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
"""Model name or local path to use."""
|
||||
|
||||
|
@@ -15,7 +15,7 @@ def default_preprocessing_func(text: str) -> List[str]:
|
||||
class BM25Retriever(BaseRetriever):
|
||||
"""`BM25` retriever without Elasticsearch."""
|
||||
|
||||
vectorizer: Any
|
||||
vectorizer: Any = None
|
||||
""" BM25 vectorizer."""
|
||||
docs: List[Document] = Field(repr=False)
|
||||
""" List of documents."""
|
||||
|
@@ -38,7 +38,7 @@ class DocArrayRetriever(BaseRetriever):
|
||||
top_k: Number of documents to return
|
||||
"""
|
||||
|
||||
index: Any
|
||||
index: Any = None
|
||||
embeddings: Embeddings
|
||||
search_field: str
|
||||
content_field: str
|
||||
|
@@ -239,7 +239,7 @@ class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetr
|
||||
"""
|
||||
|
||||
# type is SearchServiceClient but can't be set due to optional imports
|
||||
_client: Any
|
||||
_client: Any = None
|
||||
_serving_config: str
|
||||
|
||||
model_config = ConfigDict(
|
||||
@@ -405,7 +405,7 @@ class GoogleVertexAIMultiTurnSearchRetriever(
|
||||
"""Vertex AI Search Conversation ID."""
|
||||
|
||||
# type is ConversationalSearchServiceClient but can't be set due to optional imports
|
||||
_client: Any
|
||||
_client: Any = None
|
||||
_serving_config: str
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -35,7 +35,7 @@ class KNNRetriever(BaseRetriever):
|
||||
|
||||
embeddings: Embeddings
|
||||
"""Embeddings model to use."""
|
||||
index: Any
|
||||
index: Any = None
|
||||
"""Index of embeddings."""
|
||||
texts: List[str]
|
||||
"""List of texts to index."""
|
||||
|
@@ -12,7 +12,7 @@ class LlamaIndexRetriever(BaseRetriever):
|
||||
It is used for the question-answering with sources over
|
||||
an LlamaIndex data structure."""
|
||||
|
||||
index: Any
|
||||
index: Any = None
|
||||
"""LlamaIndex index to query."""
|
||||
query_kwargs: Dict = Field(default_factory=dict)
|
||||
"""Keyword arguments to pass to the query method."""
|
||||
@@ -48,7 +48,7 @@ class LlamaIndexGraphRetriever(BaseRetriever):
|
||||
It is used for question-answering with sources over an LlamaIndex
|
||||
graph data structure."""
|
||||
|
||||
graph: Any
|
||||
graph: Any = None
|
||||
"""LlamaIndex graph to query."""
|
||||
query_configs: List[Dict] = Field(default_factory=list)
|
||||
"""List of query configs to pass to the query method."""
|
||||
|
@@ -31,7 +31,7 @@ class NanoPQRetriever(BaseRetriever):
|
||||
|
||||
embeddings: Embeddings
|
||||
"""Embeddings model to use."""
|
||||
index: Any
|
||||
index: Any = None
|
||||
"""Index of embeddings."""
|
||||
texts: List[str]
|
||||
"""List of texts to index."""
|
||||
|
@@ -104,9 +104,9 @@ class PineconeHybridSearchRetriever(BaseRetriever):
|
||||
embeddings: Embeddings
|
||||
"""Embeddings model to use."""
|
||||
"""description"""
|
||||
sparse_encoder: Any
|
||||
sparse_encoder: Any = None
|
||||
"""Sparse encoder to use."""
|
||||
index: Any
|
||||
index: Any = None
|
||||
"""Pinecone index to use."""
|
||||
top_k: int = 4
|
||||
"""Number of documents to return."""
|
||||
|
@@ -36,7 +36,7 @@ from langchain_community.vectorstores.qdrant import Qdrant, QdrantException
|
||||
class QdrantSparseVectorRetriever(BaseRetriever):
|
||||
"""Qdrant sparse vector retriever."""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
"""'qdrant_client' instance to use."""
|
||||
collection_name: str
|
||||
"""Qdrant collection name."""
|
||||
|
@@ -35,7 +35,7 @@ class SVMRetriever(BaseRetriever):
|
||||
|
||||
embeddings: Embeddings
|
||||
"""Embeddings model to use."""
|
||||
index: Any
|
||||
index: Any = None
|
||||
"""Index of embeddings."""
|
||||
texts: List[str]
|
||||
"""List of texts to index."""
|
||||
|
@@ -17,11 +17,11 @@ class TFIDFRetriever(BaseRetriever):
|
||||
https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb
|
||||
"""
|
||||
|
||||
vectorizer: Any
|
||||
vectorizer: Any = None
|
||||
"""TF-IDF vectorizer."""
|
||||
docs: List[Document]
|
||||
"""Documents."""
|
||||
tfidf_array: Any
|
||||
tfidf_array: Any = None
|
||||
"""TF-IDF array."""
|
||||
k: int = 4
|
||||
"""Number of documents to return."""
|
||||
|
@@ -16,7 +16,7 @@ class WeaviateHybridSearchRetriever(BaseRetriever):
|
||||
https://weaviate.io/blog/hybrid-search-explained
|
||||
"""
|
||||
|
||||
client: Any
|
||||
client: Any = None
|
||||
"""keyword arguments to pass to the Weaviate client."""
|
||||
index_name: str
|
||||
"""The name of the index to use."""
|
||||
|
@@ -43,11 +43,11 @@ class EdenAiTextToSpeechTool(EdenaiTool):
|
||||
|
||||
# optional params see api documentation for more info
|
||||
return_type: Literal["url", "wav"] = "url"
|
||||
rate: Optional[int]
|
||||
pitch: Optional[int]
|
||||
volume: Optional[int]
|
||||
audio_format: Optional[str]
|
||||
sampling_rate: Optional[int]
|
||||
rate: Optional[int] = None
|
||||
pitch: Optional[int] = None
|
||||
volume: Optional[int] = None
|
||||
audio_format: Optional[str] = None
|
||||
sampling_rate: Optional[int] = None
|
||||
voice_models: Dict[str, str] = Field(default_factory=dict)
|
||||
|
||||
voice: Literal["MALE", "FEMALE"]
|
||||
|
@@ -31,7 +31,7 @@ class QueryPowerBITool(BaseTool):
|
||||
|
||||
Example Input: "How many rows are in table1?"
|
||||
""" # noqa: E501
|
||||
llm_chain: Any
|
||||
llm_chain: Any = None
|
||||
powerbi: PowerBIDataset = Field(exclude=True)
|
||||
examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES
|
||||
session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True)
|
||||
|
@@ -12,8 +12,8 @@ from pydantic import BaseModel, ConfigDict, model_validator
|
||||
class AskNewsAPIWrapper(BaseModel):
|
||||
"""Wrapper for AskNews API."""
|
||||
|
||||
asknews_sync: Any #: :meta private:
|
||||
asknews_async: Any #: :meta private:
|
||||
asknews_sync: Any = None #: :meta private:
|
||||
asknews_async: Any = None #: :meta private:
|
||||
asknews_client_id: Optional[str] = None
|
||||
"""Client ID for the AskNews API."""
|
||||
asknews_client_secret: Optional[str] = None
|
||||
|
@@ -21,7 +21,7 @@ class LambdaWrapper(BaseModel):
|
||||
|
||||
"""
|
||||
|
||||
lambda_client: Any #: :meta private:
|
||||
lambda_client: Any = None #: :meta private:
|
||||
"""The configured boto3 client"""
|
||||
function_name: Optional[str] = None
|
||||
"""The name of your lambda function"""
|
||||
|
@@ -27,7 +27,7 @@ class DallEAPIWrapper(BaseModel):
|
||||
2. save your OPENAI_API_KEY in an environment variable
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||
model_name: str = Field(default="dall-e-2", alias="model")
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
@@ -18,7 +18,7 @@ class DataheraldAPIWrapper(BaseModel):
|
||||
|
||||
"""
|
||||
|
||||
dataherald_client: Any #: :meta private:
|
||||
dataherald_client: Any = None #: :meta private:
|
||||
db_connection_id: str
|
||||
dataherald_api_key: Optional[str] = None
|
||||
|
||||
|
@@ -29,8 +29,8 @@ def _import_tiktoken() -> Any:
|
||||
class GitHubAPIWrapper(BaseModel):
|
||||
"""Wrapper for GitHub API."""
|
||||
|
||||
github: Any #: :meta private:
|
||||
github_repo_instance: Any #: :meta private:
|
||||
github: Any = None #: :meta private:
|
||||
github_repo_instance: Any = None #: :meta private:
|
||||
github_repository: Optional[str] = None
|
||||
github_app_id: Optional[str] = None
|
||||
github_app_private_key: Optional[str] = None
|
||||
|
@@ -15,8 +15,8 @@ if TYPE_CHECKING:
|
||||
class GitLabAPIWrapper(BaseModel):
|
||||
"""Wrapper for GitLab API."""
|
||||
|
||||
gitlab: Any #: :meta private:
|
||||
gitlab_repo_instance: Any #: :meta private:
|
||||
gitlab: Any = None #: :meta private:
|
||||
gitlab_repo_instance: Any = None #: :meta private:
|
||||
gitlab_repository: Optional[str] = None
|
||||
"""The name of the GitLab repository, in the form {username}/{repo-name}."""
|
||||
gitlab_personal_access_token: Optional[str] = None
|
||||
|
@@ -22,7 +22,7 @@ class GoogleFinanceAPIWrapper(BaseModel):
|
||||
google_Finance.run('langchain')
|
||||
"""
|
||||
|
||||
serp_search_engine: Any
|
||||
serp_search_engine: Any = None
|
||||
serp_api_key: Optional[SecretStr] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -22,7 +22,7 @@ class GoogleJobsAPIWrapper(BaseModel):
|
||||
google_Jobs.run('langchain')
|
||||
"""
|
||||
|
||||
serp_search_engine: Any
|
||||
serp_search_engine: Any = None
|
||||
serp_api_key: Optional[SecretStr] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -27,7 +27,7 @@ class GoogleLensAPIWrapper(BaseModel):
|
||||
google_lens.run('langchain')
|
||||
"""
|
||||
|
||||
serp_search_engine: Any
|
||||
serp_search_engine: Any = None
|
||||
serp_api_key: Optional[SecretStr] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -34,7 +34,7 @@ class GooglePlacesAPIWrapper(BaseModel):
|
||||
"""
|
||||
|
||||
gplaces_api_key: Optional[str] = None
|
||||
google_map_client: Any #: :meta private:
|
||||
google_map_client: Any = None #: :meta private:
|
||||
top_k_results: Optional[int] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -51,7 +51,7 @@ class GoogleSearchAPIWrapper(BaseModel):
|
||||
|
||||
"""
|
||||
|
||||
search_engine: Any #: :meta private:
|
||||
search_engine: Any = None #: :meta private:
|
||||
google_api_key: Optional[str] = None
|
||||
google_cse_id: Optional[str] = None
|
||||
k: int = 10
|
||||
|
@@ -26,7 +26,7 @@ class GoogleTrendsAPIWrapper(BaseModel):
|
||||
google_trends.run('langchain')
|
||||
"""
|
||||
|
||||
serp_search_engine: Any
|
||||
serp_search_engine: Any = None
|
||||
serp_api_key: Optional[SecretStr] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -14,7 +14,7 @@ class GraphQLAPIWrapper(BaseModel):
|
||||
custom_headers: Optional[Dict[str, str]] = None
|
||||
fetch_schema_from_transport: Optional[bool] = None
|
||||
graphql_endpoint: str
|
||||
gql_client: Any #: :meta private:
|
||||
gql_client: Any = None #: :meta private:
|
||||
gql_function: Callable[[str], Any] #: :meta private:
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -10,8 +10,8 @@ from pydantic import BaseModel, ConfigDict, model_validator
|
||||
class JiraAPIWrapper(BaseModel):
|
||||
"""Wrapper for Jira API."""
|
||||
|
||||
jira: Any #: :meta private:
|
||||
confluence: Any
|
||||
jira: Any = None #: :meta private:
|
||||
confluence: Any = None
|
||||
jira_username: Optional[str] = None
|
||||
jira_api_token: Optional[str] = None
|
||||
jira_instance_url: Optional[str] = None
|
||||
|
@@ -16,7 +16,7 @@ class OpenWeatherMapAPIWrapper(BaseModel):
|
||||
3. pip install pyowm
|
||||
"""
|
||||
|
||||
owm: Any
|
||||
owm: Any = None
|
||||
openweathermap_api_key: Optional[str] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
@@ -40,7 +40,7 @@ class SerpAPIWrapper(BaseModel):
|
||||
serpapi = SerpAPIWrapper()
|
||||
"""
|
||||
|
||||
search_engine: Any #: :meta private:
|
||||
search_engine: Any = None #: :meta private:
|
||||
params: dict = Field(
|
||||
default={
|
||||
"engine": "google",
|
||||
|
@@ -7,7 +7,7 @@ from pydantic import BaseModel, Field, model_validator
|
||||
class StackExchangeAPIWrapper(BaseModel):
|
||||
"""Wrapper for Stack Exchange API."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
max_results: int = 3
|
||||
"""Max number of results to include in output."""
|
||||
query_type: Literal["all", "title", "body"] = "all"
|
||||
|
@@ -13,7 +13,7 @@ from langchain_community.tools.steam.prompt import (
|
||||
class SteamWebAPIWrapper(BaseModel):
|
||||
"""Wrapper for Steam API."""
|
||||
|
||||
steam: Any # for python-steam-api
|
||||
steam: Any = None # for python-steam-api
|
||||
|
||||
# operations: a list of dictionaries, each representing a specific operation that
|
||||
# can be performed with the API
|
||||
|
@@ -26,7 +26,7 @@ class TwilioAPIWrapper(BaseModel):
|
||||
twilio.run('test', '+12484345508')
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
account_sid: Optional[str] = None
|
||||
"""Twilio account string identifier."""
|
||||
auth_token: Optional[str] = None
|
||||
|
@@ -18,7 +18,7 @@ class WolframAlphaAPIWrapper(BaseModel):
|
||||
|
||||
"""
|
||||
|
||||
wolfram_client: Any #: :meta private:
|
||||
wolfram_client: Any = None #: :meta private:
|
||||
wolfram_alpha_appid: Optional[str] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
|
Reference in New Issue
Block a user