mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 06:53:16 +00:00
Added support for examples for VertexAI chat models. (#7636)
#5278 Co-authored-by: Leonid Kuligin <kuligin@google.com>
This commit is contained in:
@@ -7,12 +7,12 @@ pip install google-cloud-aiplatform>=1.25.0
|
||||
Your end-user credentials would be used to make the calls (make sure you've run
|
||||
`gcloud auth login` first).
|
||||
"""
|
||||
from unittest.mock import Mock, patch
|
||||
from unittest.mock import MagicMock, Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.chat_models import ChatVertexAI
|
||||
from langchain.chat_models.vertexai import _parse_chat_history
|
||||
from langchain.chat_models.vertexai import _parse_chat_history, _parse_examples
|
||||
from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
|
||||
|
||||
|
||||
@@ -42,6 +42,20 @@ def test_vertexai_single_call_with_context() -> None:
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
|
||||
def test_vertexai_single_call_with_examples() -> None:
|
||||
model = ChatVertexAI()
|
||||
raw_context = "My name is Ned. You are my personal assistant."
|
||||
question = "2+2"
|
||||
text_question, text_answer = "4+4", "8"
|
||||
inp = HumanMessage(content=text_question)
|
||||
output = AIMessage(content=text_answer)
|
||||
context = SystemMessage(content=raw_context)
|
||||
message = HumanMessage(content=question)
|
||||
response = model([context, message], examples=[inp, output])
|
||||
assert isinstance(response, AIMessage)
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
|
||||
def test_parse_chat_history_correct() -> None:
|
||||
from vertexai.language_models import ChatMessage
|
||||
|
||||
@@ -92,17 +106,50 @@ def test_vertexai_args_passed() -> None:
|
||||
|
||||
# Mock the library to ensure the args are passed correctly
|
||||
with patch(
|
||||
"vertexai.language_models._language_models.ChatSession.send_message"
|
||||
) as send_message:
|
||||
"vertexai.language_models._language_models.ChatModel.start_chat"
|
||||
) as start_chat:
|
||||
mock_response = Mock(text=response_text)
|
||||
send_message.return_value = mock_response
|
||||
mock_chat = MagicMock()
|
||||
start_chat.return_value = mock_chat
|
||||
mock_send_message = MagicMock(return_value=mock_response)
|
||||
mock_chat.send_message = mock_send_message
|
||||
|
||||
model = ChatVertexAI(**prompt_params)
|
||||
message = HumanMessage(content=user_prompt)
|
||||
response = model([message])
|
||||
|
||||
assert response.content == response_text
|
||||
send_message.assert_called_once_with(
|
||||
user_prompt,
|
||||
**prompt_params,
|
||||
mock_send_message.assert_called_once_with(user_prompt)
|
||||
start_chat.assert_called_once_with(
|
||||
context=None, message_history=[], **prompt_params
|
||||
)
|
||||
|
||||
|
||||
def test_parse_examples_correct() -> None:
|
||||
from vertexai.language_models import InputOutputTextPair
|
||||
|
||||
text_question = (
|
||||
"Hello, could you recommend a good movie for me to watch this evening, please?"
|
||||
)
|
||||
question = HumanMessage(content=text_question)
|
||||
text_answer = (
|
||||
"Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring "
|
||||
"(2001): This is the first movie in the Lord of the Rings trilogy."
|
||||
)
|
||||
answer = AIMessage(content=text_answer)
|
||||
examples = _parse_examples([question, answer, question, answer])
|
||||
assert len(examples) == 2
|
||||
assert examples == [
|
||||
InputOutputTextPair(input_text=text_question, output_text=text_answer),
|
||||
InputOutputTextPair(input_text=text_question, output_text=text_answer),
|
||||
]
|
||||
|
||||
|
||||
def test_parse_exmaples_failes_wrong_sequence() -> None:
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
_ = _parse_examples([AIMessage(content="a")])
|
||||
print(str(exc_info.value))
|
||||
assert (
|
||||
str(exc_info.value)
|
||||
== "Expect examples to have an even amount of messages, got 1."
|
||||
)
|
||||
|
Reference in New Issue
Block a user