core[patch]: Update messages namespace to fix API reference docs (#19161)

Classes and functions defined in __init__.py are not parsed into the API
Reference.
For example:
- libs/core/langchain_core/messages/__init__.py : AnyMessage,
MessageLikeRepresentation, get_buffer_string(), messages_from_dict(),
...

Opinionated: __init__.py is not a typical place to define artifacts.

Moved artifacts from __init__ into utils.py. 
Added `MessageLikeRepresentation` to __all__ since it is used outside of
`messages`, for example, in
`libs/core/langchain_core/language_models/base.py`
Added `_message_from_dict` to __all__ since it is used outside of
`messages`(???) I would add `message_from_dict` (without underscore) as
an alias. Please, advise.
This commit is contained in:
Leonid Ganeline 2024-03-20 06:25:09 -07:00 committed by GitHub
parent 4c2e887276
commit 8609afbd10
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 245 additions and 222 deletions

View File

@ -14,7 +14,6 @@
ChatPromptTemplate
""" # noqa: E501
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from langchain_core.messages.ai import AIMessage, AIMessageChunk
from langchain_core.messages.base import (
@ -29,223 +28,15 @@ from langchain_core.messages.function import FunctionMessage, FunctionMessageChu
from langchain_core.messages.human import HumanMessage, HumanMessageChunk
from langchain_core.messages.system import SystemMessage, SystemMessageChunk
from langchain_core.messages.tool import ToolMessage, ToolMessageChunk
AnyMessage = Union[
AIMessage, HumanMessage, ChatMessage, SystemMessage, FunctionMessage, ToolMessage
]
def get_buffer_string(
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
"""Convert a sequence of Messages to strings and concatenate them into one string.
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:
A single string concatenation of all input messages.
Example:
.. code-block:: python
from langchain_core import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
"""
string_messages = []
for m in messages:
if isinstance(m, HumanMessage):
role = human_prefix
elif isinstance(m, AIMessage):
role = ai_prefix
elif isinstance(m, SystemMessage):
role = "System"
elif isinstance(m, FunctionMessage):
role = "Function"
elif isinstance(m, ToolMessage):
role = "Tool"
elif isinstance(m, ChatMessage):
role = m.role
else:
raise ValueError(f"Got unsupported message type: {m}")
message = f"{role}: {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return "\n".join(string_messages)
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
elif _type == "tool":
return ToolMessage(**message["data"])
elif _type == "AIMessageChunk":
return AIMessageChunk(**message["data"])
elif _type == "HumanMessageChunk":
return HumanMessageChunk(**message["data"])
elif _type == "FunctionMessageChunk":
return FunctionMessageChunk(**message["data"])
elif _type == "ToolMessageChunk":
return ToolMessageChunk(**message["data"])
elif _type == "SystemMessageChunk":
return SystemMessageChunk(**message["data"])
elif _type == "ChatMessageChunk":
return ChatMessageChunk(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
def messages_from_dict(messages: Sequence[dict]) -> List[BaseMessage]:
"""Convert a sequence of messages from dicts to Message objects.
Args:
messages: Sequence of messages (as dicts) to convert.
Returns:
List of messages (BaseMessages).
"""
return [_message_from_dict(m) for m in messages]
def message_chunk_to_message(chunk: BaseMessageChunk) -> BaseMessage:
"""Convert a message chunk to a message.
Args:
chunk: Message chunk to convert.
Returns:
Message.
"""
if not isinstance(chunk, BaseMessageChunk):
return chunk
# chunk classes always have the equivalent non-chunk class as their first parent
return chunk.__class__.__mro__[1](
**{k: v for k, v in chunk.__dict__.items() if k != "type"}
)
MessageLikeRepresentation = Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]
def _create_message_from_message_type(
message_type: str,
content: str,
name: Optional[str] = None,
tool_call_id: Optional[str] = None,
**additional_kwargs: Any,
) -> BaseMessage:
"""Create a message from a message type and content string.
Args:
message_type: str the type of the message (e.g., "human", "ai", etc.)
content: str the content string.
Returns:
a message of the appropriate type.
"""
kwargs: Dict[str, Any] = {}
if name is not None:
kwargs["name"] = name
if tool_call_id is not None:
kwargs["tool_call_id"] = tool_call_id
if additional_kwargs:
kwargs["additional_kwargs"] = additional_kwargs # type: ignore[assignment]
if message_type in ("human", "user"):
message: BaseMessage = HumanMessage(content=content, **kwargs)
elif message_type in ("ai", "assistant"):
message = AIMessage(content=content, **kwargs)
elif message_type == "system":
message = SystemMessage(content=content, **kwargs)
elif message_type == "function":
message = FunctionMessage(content=content, **kwargs)
elif message_type == "tool":
message = ToolMessage(content=content, **kwargs)
else:
raise ValueError(
f"Unexpected message type: {message_type}. Use one of 'human',"
f" 'user', 'ai', 'assistant', or 'system'."
)
return message
def _convert_to_message(
message: MessageLikeRepresentation,
) -> BaseMessage:
"""Instantiate a message from a variety of message formats.
The message format can be one of the following:
- BaseMessagePromptTemplate
- BaseMessage
- 2-tuple of (role string, template); e.g., ("human", "{user_input}")
- dict: a message dict with role and content keys
- string: shorthand for ("human", template); e.g., "{user_input}"
Args:
message: a representation of a message in one of the supported formats
Returns:
an instance of a message or a message template
"""
if isinstance(message, BaseMessage):
_message = message
elif isinstance(message, str):
_message = _create_message_from_message_type("human", message)
elif isinstance(message, tuple):
if len(message) != 2:
raise ValueError(f"Expected 2-tuple of (role, template), got {message}")
message_type_str, template = message
_message = _create_message_from_message_type(message_type_str, template)
elif isinstance(message, dict):
msg_kwargs = message.copy()
try:
msg_type = msg_kwargs.pop("role")
msg_content = msg_kwargs.pop("content")
except KeyError:
raise ValueError(
f"Message dict must contain 'role' and 'content' keys, got {message}"
)
_message = _create_message_from_message_type(
msg_type, msg_content, **msg_kwargs
)
else:
raise NotImplementedError(f"Unsupported message type: {type(message)}")
return _message
def convert_to_messages(
messages: Sequence[MessageLikeRepresentation],
) -> List[BaseMessage]:
"""Convert a sequence of messages to a list of messages.
Args:
messages: Sequence of messages to convert.
Returns:
List of messages (BaseMessages).
"""
return [_convert_to_message(m) for m in messages]
from langchain_core.messages.utils import (
AnyMessage,
MessageLikeRepresentation,
_message_from_dict,
convert_to_messages,
get_buffer_string,
message_chunk_to_message,
messages_from_dict,
)
__all__ = [
"AIMessage",
@ -259,15 +50,17 @@ __all__ = [
"FunctionMessageChunk",
"HumanMessage",
"HumanMessageChunk",
"MessageLikeRepresentation",
"SystemMessage",
"SystemMessageChunk",
"ToolMessage",
"ToolMessageChunk",
"_message_from_dict",
"convert_to_messages",
"get_buffer_string",
"merge_content",
"message_chunk_to_message",
"message_to_dict",
"messages_from_dict",
"messages_to_dict",
"message_to_dict",
"merge_content",
]

View File

@ -0,0 +1,228 @@
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from langchain_core.messages.ai import AIMessage, AIMessageChunk
from langchain_core.messages.base import (
BaseMessage,
BaseMessageChunk,
)
from langchain_core.messages.chat import ChatMessage, ChatMessageChunk
from langchain_core.messages.function import FunctionMessage, FunctionMessageChunk
from langchain_core.messages.human import HumanMessage, HumanMessageChunk
from langchain_core.messages.system import SystemMessage, SystemMessageChunk
from langchain_core.messages.tool import ToolMessage, ToolMessageChunk
AnyMessage = Union[
AIMessage, HumanMessage, ChatMessage, SystemMessage, FunctionMessage, ToolMessage
]
def get_buffer_string(
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
"""Convert a sequence of Messages to strings and concatenate them into one string.
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:
A single string concatenation of all input messages.
Example:
.. code-block:: python
from langchain_core import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
"""
string_messages = []
for m in messages:
if isinstance(m, HumanMessage):
role = human_prefix
elif isinstance(m, AIMessage):
role = ai_prefix
elif isinstance(m, SystemMessage):
role = "System"
elif isinstance(m, FunctionMessage):
role = "Function"
elif isinstance(m, ToolMessage):
role = "Tool"
elif isinstance(m, ChatMessage):
role = m.role
else:
raise ValueError(f"Got unsupported message type: {m}")
message = f"{role}: {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return "\n".join(string_messages)
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
elif _type == "tool":
return ToolMessage(**message["data"])
elif _type == "AIMessageChunk":
return AIMessageChunk(**message["data"])
elif _type == "HumanMessageChunk":
return HumanMessageChunk(**message["data"])
elif _type == "FunctionMessageChunk":
return FunctionMessageChunk(**message["data"])
elif _type == "ToolMessageChunk":
return ToolMessageChunk(**message["data"])
elif _type == "SystemMessageChunk":
return SystemMessageChunk(**message["data"])
elif _type == "ChatMessageChunk":
return ChatMessageChunk(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
def messages_from_dict(messages: Sequence[dict]) -> List[BaseMessage]:
"""Convert a sequence of messages from dicts to Message objects.
Args:
messages: Sequence of messages (as dicts) to convert.
Returns:
List of messages (BaseMessages).
"""
return [_message_from_dict(m) for m in messages]
def message_chunk_to_message(chunk: BaseMessageChunk) -> BaseMessage:
"""Convert a message chunk to a message.
Args:
chunk: Message chunk to convert.
Returns:
Message.
"""
if not isinstance(chunk, BaseMessageChunk):
return chunk
# chunk classes always have the equivalent non-chunk class as their first parent
return chunk.__class__.__mro__[1](
**{k: v for k, v in chunk.__dict__.items() if k != "type"}
)
MessageLikeRepresentation = Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]
def _create_message_from_message_type(
message_type: str,
content: str,
name: Optional[str] = None,
tool_call_id: Optional[str] = None,
**additional_kwargs: Any,
) -> BaseMessage:
"""Create a message from a message type and content string.
Args:
message_type: str the type of the message (e.g., "human", "ai", etc.)
content: str the content string.
Returns:
a message of the appropriate type.
"""
kwargs: Dict[str, Any] = {}
if name is not None:
kwargs["name"] = name
if tool_call_id is not None:
kwargs["tool_call_id"] = tool_call_id
if additional_kwargs:
kwargs["additional_kwargs"] = additional_kwargs # type: ignore[assignment]
if message_type in ("human", "user"):
message: BaseMessage = HumanMessage(content=content, **kwargs)
elif message_type in ("ai", "assistant"):
message = AIMessage(content=content, **kwargs)
elif message_type == "system":
message = SystemMessage(content=content, **kwargs)
elif message_type == "function":
message = FunctionMessage(content=content, **kwargs)
elif message_type == "tool":
message = ToolMessage(content=content, **kwargs)
else:
raise ValueError(
f"Unexpected message type: {message_type}. Use one of 'human',"
f" 'user', 'ai', 'assistant', or 'system'."
)
return message
def _convert_to_message(
message: MessageLikeRepresentation,
) -> BaseMessage:
"""Instantiate a message from a variety of message formats.
The message format can be one of the following:
- BaseMessagePromptTemplate
- BaseMessage
- 2-tuple of (role string, template); e.g., ("human", "{user_input}")
- dict: a message dict with role and content keys
- string: shorthand for ("human", template); e.g., "{user_input}"
Args:
message: a representation of a message in one of the supported formats
Returns:
an instance of a message or a message template
"""
if isinstance(message, BaseMessage):
_message = message
elif isinstance(message, str):
_message = _create_message_from_message_type("human", message)
elif isinstance(message, tuple):
if len(message) != 2:
raise ValueError(f"Expected 2-tuple of (role, template), got {message}")
message_type_str, template = message
_message = _create_message_from_message_type(message_type_str, template)
elif isinstance(message, dict):
msg_kwargs = message.copy()
try:
msg_type = msg_kwargs.pop("role")
msg_content = msg_kwargs.pop("content")
except KeyError:
raise ValueError(
f"Message dict must contain 'role' and 'content' keys, got {message}"
)
_message = _create_message_from_message_type(
msg_type, msg_content, **msg_kwargs
)
else:
raise NotImplementedError(f"Unsupported message type: {type(message)}")
return _message
def convert_to_messages(
messages: Sequence[MessageLikeRepresentation],
) -> List[BaseMessage]:
"""Convert a sequence of messages to a list of messages.
Args:
messages: Sequence of messages to convert.
Returns:
List of messages (BaseMessages).
"""
return [_convert_to_message(m) for m in messages]

View File

@ -1,6 +1,8 @@
from langchain_core.messages import __all__
EXPECTED_ALL = [
"MessageLikeRepresentation",
"_message_from_dict",
"AIMessage",
"AIMessageChunk",
"AnyMessage",
@ -18,11 +20,11 @@ EXPECTED_ALL = [
"ToolMessageChunk",
"convert_to_messages",
"get_buffer_string",
"merge_content",
"message_chunk_to_message",
"message_to_dict",
"messages_from_dict",
"messages_to_dict",
"message_to_dict",
"merge_content",
]