mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-05 20:58:25 +00:00
togetherai[patch]: Update API Reference for together AI embeddings model (#25295)
Issue: https://github.com/langchain-ai/langchain/issues/24856
This commit is contained in:
parent
1af8456a2c
commit
8626abf8b5
@ -35,17 +35,74 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
class TogetherEmbeddings(BaseModel, Embeddings):
|
class TogetherEmbeddings(BaseModel, Embeddings):
|
||||||
"""TogetherEmbeddings embedding model.
|
"""Together embedding model integration.
|
||||||
|
|
||||||
To use, set the environment variable `TOGETHER_API_KEY` with your API key or
|
Setup:
|
||||||
pass it as a named parameter to the constructor.
|
Install ``langchain_together`` and set environment variable
|
||||||
|
``TOGETHER_API_KEY``.
|
||||||
|
|
||||||
Example:
|
.. code-block:: bash
|
||||||
|
|
||||||
|
pip install -U langchain_together
|
||||||
|
export TOGETHER_API_KEY="your-api-key"
|
||||||
|
|
||||||
|
Key init args — completion params:
|
||||||
|
model: str
|
||||||
|
Name of Together model to use.
|
||||||
|
|
||||||
|
Key init args — client params:
|
||||||
|
api_key: Optional[SecretStr]
|
||||||
|
|
||||||
|
See full list of supported init args and their descriptions in the params section.
|
||||||
|
|
||||||
|
Instantiate:
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_together import TogetherEmbeddings
|
from __module_name__ import TogetherEmbeddings
|
||||||
|
|
||||||
model = TogetherEmbeddings()
|
embed = TogetherEmbeddings(
|
||||||
|
model="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||||
|
# api_key="...",
|
||||||
|
# other params...
|
||||||
|
)
|
||||||
|
|
||||||
|
Embed single text:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
input_text = "The meaning of life is 42"
|
||||||
|
vector = embed.embed_query(input_text)
|
||||||
|
print(vector[:3])
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||||
|
|
||||||
|
Embed multiple texts:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
input_texts = ["Document 1...", "Document 2..."]
|
||||||
|
vectors = embed.embed_documents(input_texts)
|
||||||
|
print(len(vectors))
|
||||||
|
# The first 3 coordinates for the first vector
|
||||||
|
print(vectors[0][:3])
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
2
|
||||||
|
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||||
|
|
||||||
|
Async:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
vector = await embed.aembed_query(input_text)
|
||||||
|
print(vector[:3])
|
||||||
|
|
||||||
|
# multiple:
|
||||||
|
# await embed.aembed_documents(input_texts)
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
client: Any = Field(default=None, exclude=True) #: :meta private:
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||||
|
Loading…
Reference in New Issue
Block a user