mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-09 06:24:47 +00:00
feat: Add ApifyWrapper
class (#10067)
If you look at documentation https://python.langchain.com/docs/integrations/tools/apify (or the actual file https://github.com/langchain-ai/langchain/blob/master/docs/extras/integrations/tools/apify.ipynb ), there's a class `ApifyWrapper` mentioned. It seems it got lost in some refactoring, i.e. it does not exist in the codebase ATM. I just propose to add it back. It would fix issues e.g. https://github.com/langchain-ai/langchain/issues/8307 or https://github.com/langchain-ai/langchain/issues/8201 To add, Apify is a wanted integration, e.g. see https://twitter.com/hwchase17/status/1695490295914545626 or https://twitter.com/hwchase17/status/1695470765343461756 Lastly, I offer taking ownership of the Apify-related parts of the codebase, so you can tag me if anything is needed.
This commit is contained in:
parent
02e51f4217
commit
86646ec555
@ -4,6 +4,7 @@ Other LangChain classes use **Utilities** to interact with third-part systems
|
||||
and packages.
|
||||
"""
|
||||
from langchain.utilities.alpha_vantage import AlphaVantageAPIWrapper
|
||||
from langchain.utilities.apify import ApifyWrapper
|
||||
from langchain.utilities.arxiv import ArxivAPIWrapper
|
||||
from langchain.utilities.awslambda import LambdaWrapper
|
||||
from langchain.utilities.bash import BashProcess
|
||||
@ -38,6 +39,7 @@ from langchain.utilities.zapier import ZapierNLAWrapper
|
||||
|
||||
__all__ = [
|
||||
"AlphaVantageAPIWrapper",
|
||||
"ApifyWrapper",
|
||||
"ArxivAPIWrapper",
|
||||
"BashProcess",
|
||||
"BibtexparserWrapper",
|
||||
|
194
libs/langchain/langchain/utilities/apify.py
Normal file
194
libs/langchain/langchain/utilities/apify.py
Normal file
@ -0,0 +1,194 @@
|
||||
from typing import Any, Callable, Dict, Optional
|
||||
|
||||
from langchain.document_loaders import ApifyDatasetLoader
|
||||
from langchain.document_loaders.base import Document
|
||||
from langchain.pydantic_v1 import BaseModel, root_validator
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class ApifyWrapper(BaseModel):
|
||||
"""Wrapper around Apify.
|
||||
To use, you should have the ``apify-client`` python package installed,
|
||||
and the environment variable ``APIFY_API_TOKEN`` set with your API key, or pass
|
||||
`apify_api_token` as a named parameter to the constructor.
|
||||
"""
|
||||
|
||||
apify_client: Any
|
||||
apify_client_async: Any
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate environment.
|
||||
Validate that an Apify API token is set and the apify-client
|
||||
Python package exists in the current environment.
|
||||
"""
|
||||
apify_api_token = get_from_dict_or_env(
|
||||
values, "apify_api_token", "APIFY_API_TOKEN"
|
||||
)
|
||||
|
||||
try:
|
||||
from apify_client import ApifyClient, ApifyClientAsync
|
||||
|
||||
values["apify_client"] = ApifyClient(apify_api_token)
|
||||
values["apify_client_async"] = ApifyClientAsync(apify_api_token)
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import apify-client Python package. "
|
||||
"Please install it with `pip install apify-client`."
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def call_actor(
|
||||
self,
|
||||
actor_id: str,
|
||||
run_input: Dict,
|
||||
dataset_mapping_function: Callable[[Dict], Document],
|
||||
*,
|
||||
build: Optional[str] = None,
|
||||
memory_mbytes: Optional[int] = None,
|
||||
timeout_secs: Optional[int] = None,
|
||||
) -> ApifyDatasetLoader:
|
||||
"""Run an Actor on the Apify platform and wait for results to be ready.
|
||||
Args:
|
||||
actor_id (str): The ID or name of the Actor on the Apify platform.
|
||||
run_input (Dict): The input object of the Actor that you're trying to run.
|
||||
dataset_mapping_function (Callable): A function that takes a single
|
||||
dictionary (an Apify dataset item) and converts it to an
|
||||
instance of the Document class.
|
||||
build (str, optional): Optionally specifies the actor build to run.
|
||||
It can be either a build tag or build number.
|
||||
memory_mbytes (int, optional): Optional memory limit for the run,
|
||||
in megabytes.
|
||||
timeout_secs (int, optional): Optional timeout for the run, in seconds.
|
||||
Returns:
|
||||
ApifyDatasetLoader: A loader that will fetch the records from the
|
||||
Actor run's default dataset.
|
||||
"""
|
||||
actor_call = self.apify_client.actor(actor_id).call(
|
||||
run_input=run_input,
|
||||
build=build,
|
||||
memory_mbytes=memory_mbytes,
|
||||
timeout_secs=timeout_secs,
|
||||
)
|
||||
|
||||
return ApifyDatasetLoader(
|
||||
dataset_id=actor_call["defaultDatasetId"],
|
||||
dataset_mapping_function=dataset_mapping_function,
|
||||
)
|
||||
|
||||
async def acall_actor(
|
||||
self,
|
||||
actor_id: str,
|
||||
run_input: Dict,
|
||||
dataset_mapping_function: Callable[[Dict], Document],
|
||||
*,
|
||||
build: Optional[str] = None,
|
||||
memory_mbytes: Optional[int] = None,
|
||||
timeout_secs: Optional[int] = None,
|
||||
) -> ApifyDatasetLoader:
|
||||
"""Run an Actor on the Apify platform and wait for results to be ready.
|
||||
Args:
|
||||
actor_id (str): The ID or name of the Actor on the Apify platform.
|
||||
run_input (Dict): The input object of the Actor that you're trying to run.
|
||||
dataset_mapping_function (Callable): A function that takes a single
|
||||
dictionary (an Apify dataset item) and converts it to
|
||||
an instance of the Document class.
|
||||
build (str, optional): Optionally specifies the actor build to run.
|
||||
It can be either a build tag or build number.
|
||||
memory_mbytes (int, optional): Optional memory limit for the run,
|
||||
in megabytes.
|
||||
timeout_secs (int, optional): Optional timeout for the run, in seconds.
|
||||
Returns:
|
||||
ApifyDatasetLoader: A loader that will fetch the records from the
|
||||
Actor run's default dataset.
|
||||
"""
|
||||
actor_call = await self.apify_client_async.actor(actor_id).call(
|
||||
run_input=run_input,
|
||||
build=build,
|
||||
memory_mbytes=memory_mbytes,
|
||||
timeout_secs=timeout_secs,
|
||||
)
|
||||
|
||||
return ApifyDatasetLoader(
|
||||
dataset_id=actor_call["defaultDatasetId"],
|
||||
dataset_mapping_function=dataset_mapping_function,
|
||||
)
|
||||
|
||||
def call_actor_task(
|
||||
self,
|
||||
task_id: str,
|
||||
task_input: Dict,
|
||||
dataset_mapping_function: Callable[[Dict], Document],
|
||||
*,
|
||||
build: Optional[str] = None,
|
||||
memory_mbytes: Optional[int] = None,
|
||||
timeout_secs: Optional[int] = None,
|
||||
) -> ApifyDatasetLoader:
|
||||
"""Run a saved Actor task on Apify and wait for results to be ready.
|
||||
Args:
|
||||
task_id (str): The ID or name of the task on the Apify platform.
|
||||
task_input (Dict): The input object of the task that you're trying to run.
|
||||
Overrides the task's saved input.
|
||||
dataset_mapping_function (Callable): A function that takes a single
|
||||
dictionary (an Apify dataset item) and converts it to an
|
||||
instance of the Document class.
|
||||
build (str, optional): Optionally specifies the actor build to run.
|
||||
It can be either a build tag or build number.
|
||||
memory_mbytes (int, optional): Optional memory limit for the run,
|
||||
in megabytes.
|
||||
timeout_secs (int, optional): Optional timeout for the run, in seconds.
|
||||
Returns:
|
||||
ApifyDatasetLoader: A loader that will fetch the records from the
|
||||
task run's default dataset.
|
||||
"""
|
||||
task_call = self.apify_client.task(task_id).call(
|
||||
task_input=task_input,
|
||||
build=build,
|
||||
memory_mbytes=memory_mbytes,
|
||||
timeout_secs=timeout_secs,
|
||||
)
|
||||
|
||||
return ApifyDatasetLoader(
|
||||
dataset_id=task_call["defaultDatasetId"],
|
||||
dataset_mapping_function=dataset_mapping_function,
|
||||
)
|
||||
|
||||
async def acall_actor_task(
|
||||
self,
|
||||
task_id: str,
|
||||
task_input: Dict,
|
||||
dataset_mapping_function: Callable[[Dict], Document],
|
||||
*,
|
||||
build: Optional[str] = None,
|
||||
memory_mbytes: Optional[int] = None,
|
||||
timeout_secs: Optional[int] = None,
|
||||
) -> ApifyDatasetLoader:
|
||||
"""Run a saved Actor task on Apify and wait for results to be ready.
|
||||
Args:
|
||||
task_id (str): The ID or name of the task on the Apify platform.
|
||||
task_input (Dict): The input object of the task that you're trying to run.
|
||||
Overrides the task's saved input.
|
||||
dataset_mapping_function (Callable): A function that takes a single
|
||||
dictionary (an Apify dataset item) and converts it to an
|
||||
instance of the Document class.
|
||||
build (str, optional): Optionally specifies the actor build to run.
|
||||
It can be either a build tag or build number.
|
||||
memory_mbytes (int, optional): Optional memory limit for the run,
|
||||
in megabytes.
|
||||
timeout_secs (int, optional): Optional timeout for the run, in seconds.
|
||||
Returns:
|
||||
ApifyDatasetLoader: A loader that will fetch the records from the
|
||||
task run's default dataset.
|
||||
"""
|
||||
task_call = await self.apify_client_async.task(task_id).call(
|
||||
task_input=task_input,
|
||||
build=build,
|
||||
memory_mbytes=memory_mbytes,
|
||||
timeout_secs=timeout_secs,
|
||||
)
|
||||
|
||||
return ApifyDatasetLoader(
|
||||
dataset_id=task_call["defaultDatasetId"],
|
||||
dataset_mapping_function=dataset_mapping_function,
|
||||
)
|
Loading…
Reference in New Issue
Block a user