mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-16 17:53:37 +00:00
docs: standardize ChatVertexAI (#22686)
Part of #22296. Part two of https://github.com/langchain-ai/langchain-google/pull/287
This commit is contained in:
parent
f9fdca6cc2
commit
86a3f6edf1
@ -2,33 +2,50 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Google Cloud Vertex AI\n",
|
||||
"keywords: [gemini, vertex, ChatVertexAI, gemini-pro]\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ChatVertexAI\n",
|
||||
"\n",
|
||||
"Note: This is separate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
|
||||
"This page provides a quick overview for getting started with VertexAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatVertexAI features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html).\n",
|
||||
"\n",
|
||||
"ChatVertexAI exposes all foundational models available in Google Cloud:\n",
|
||||
"ChatVertexAI exposes all foundational models available in Google Cloud, like `gemini-1.5-pro`, `gemini-1.5-flash`, etc. For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview).\n",
|
||||
"\n",
|
||||
"- Gemini (`gemini-pro` and `gemini-pro-vision`)\n",
|
||||
"- PaLM 2 for Text (`text-bison`)\n",
|
||||
"- Codey for Code Generation (`codechat-bison`)\n",
|
||||
":::info Google Cloud VertexAI vs Google PaLM\n",
|
||||
"\n",
|
||||
"For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview).\n",
|
||||
"The Google Cloud VertexAI integration is separate from the [Google PaLM integration](/docs/integrations/chat/google_generative_ai/). Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
|
||||
"\n",
|
||||
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) customer data to train its foundation models as part of Google Cloud`s AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"To use `Google Cloud Vertex AI` PaLM you must have the `langchain-google-vertexai` Python package installed and either:\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/google_vertex_ai) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatVertexAI](https://api.python.langchain.com/en/latest/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) | [langchain-google-vertexai](https://api.python.langchain.com/en/latest/google_vertexai_api_reference.html) | ❌ | beta | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access VertexAI models you'll need to create a Google Cloud Platform account, set up credentials, and install the `langchain-google-vertexai` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"To use the integration you must:\n",
|
||||
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
|
||||
"- Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable\n",
|
||||
"\n",
|
||||
@ -37,432 +54,156 @@
|
||||
"For more information, see: \n",
|
||||
"- https://cloud.google.com/docs/authentication/application-default-credentials#GAC\n",
|
||||
"- https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-google-vertexai"
|
||||
"\n",
|
||||
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_google_vertexai import ChatVertexAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\" J'aime la programmation.\")"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"system = \"You are a helpful assistant who translate English to French\"\n",
|
||||
"human = \"Translate this sentence from English to French. I love programming.\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI()\n",
|
||||
"\n",
|
||||
"chain = prompt | chat\n",
|
||||
"chain.invoke({})"
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Gemini doesn't support SystemMessage at the moment, but it can be added to the first human message in the row. If you want such behavior, just set the `convert_system_message_to_human` to `True`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"J'aime la programmation.\")"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"system = \"You are a helpful assistant who translate English to French\"\n",
|
||||
"human = \"Translate this sentence from English to French. I love programming.\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI(model=\"gemini-pro\", convert_system_message_to_human=True)\n",
|
||||
"\n",
|
||||
"chain = prompt | chat\n",
|
||||
"chain.invoke({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we want to construct a simple chain that takes user specified parameters:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=' プログラミングが大好きです')"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"system = (\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
|
||||
")\n",
|
||||
"human = \"{text}\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI()\n",
|
||||
"\n",
|
||||
"chain = prompt | chat\n",
|
||||
"\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"Japanese\",\n",
|
||||
" \"text\": \"I love programming\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Code generation chat models\n",
|
||||
"You can now leverage the Codey API for code chat within Vertex AI. The model available is:\n",
|
||||
"- `codechat-bison`: for code assistance"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" ```python\n",
|
||||
"def is_prime(n):\n",
|
||||
" \"\"\"\n",
|
||||
" Check if a number is prime.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" n: The number to check.\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" True if n is prime, False otherwise.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # If n is 1, it is not prime.\n",
|
||||
" if n == 1:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" # Iterate over all numbers from 2 to the square root of n.\n",
|
||||
" for i in range(2, int(n ** 0.5) + 1):\n",
|
||||
" # If n is divisible by any number from 2 to its square root, it is not prime.\n",
|
||||
" if n % i == 0:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" # If n is divisible by no number from 2 to its square root, it is prime.\n",
|
||||
" return True\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def find_prime_numbers(n):\n",
|
||||
" \"\"\"\n",
|
||||
" Find all prime numbers up to a given number.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" n: The upper bound for the prime numbers to find.\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" A list of all prime numbers up to n.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # Create a list of all numbers from 2 to n.\n",
|
||||
" numbers = list(range(2, n + 1))\n",
|
||||
"\n",
|
||||
" # Iterate over the list of numbers and remove any that are not prime.\n",
|
||||
" for number in numbers:\n",
|
||||
" if not is_prime(number):\n",
|
||||
" numbers.remove(number)\n",
|
||||
"\n",
|
||||
" # Return the list of prime numbers.\n",
|
||||
" return numbers\n",
|
||||
"```\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = ChatVertexAI(model=\"codechat-bison\", max_tokens=1000, temperature=0.5)\n",
|
||||
"\n",
|
||||
"message = chat.invoke(\"Write a Python function generating all prime numbers\")\n",
|
||||
"print(message.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Full generation info\n",
|
||||
"\n",
|
||||
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just chat completions\n",
|
||||
"\n",
|
||||
"Note that the `generation_info` will be different depending if you're using a gemini model or not.\n",
|
||||
"\n",
|
||||
"### Gemini model\n",
|
||||
"\n",
|
||||
"`generation_info` will include:\n",
|
||||
"\n",
|
||||
"- `is_blocked`: whether generation was blocked or not\n",
|
||||
"- `safety_ratings`: safety ratings' categories and probability labels"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pprint import pprint\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_google_vertexai import HarmBlockThreshold, HarmCategory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'citation_metadata': None,\n",
|
||||
" 'is_blocked': False,\n",
|
||||
" 'safety_ratings': [{'blocked': False,\n",
|
||||
" 'category': 'HARM_CATEGORY_HATE_SPEECH',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'},\n",
|
||||
" {'blocked': False,\n",
|
||||
" 'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'},\n",
|
||||
" {'blocked': False,\n",
|
||||
" 'category': 'HARM_CATEGORY_HARASSMENT',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'},\n",
|
||||
" {'blocked': False,\n",
|
||||
" 'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'}],\n",
|
||||
" 'usage_metadata': {'candidates_token_count': 6,\n",
|
||||
" 'prompt_token_count': 12,\n",
|
||||
" 'total_token_count': 18}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"human = \"Translate this sentence from English to French. I love programming.\"\n",
|
||||
"messages = [HumanMessage(content=human)]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI(\n",
|
||||
" model_name=\"gemini-pro\",\n",
|
||||
" safety_settings={\n",
|
||||
" HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"result = chat.generate([messages])\n",
|
||||
"pprint(result.generations[0][0].generation_info)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Non-gemini model\n",
|
||||
"\n",
|
||||
"`generation_info` will include:\n",
|
||||
"\n",
|
||||
"- `is_blocked`: whether generation was blocked or not\n",
|
||||
"- `safety_attributes`: a dictionary mapping safety attributes to their scores"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'errors': (),\n",
|
||||
" 'grounding_metadata': {'citations': [], 'search_queries': []},\n",
|
||||
" 'is_blocked': False,\n",
|
||||
" 'safety_attributes': [{'Derogatory': 0.1, 'Insult': 0.1, 'Sexual': 0.2}],\n",
|
||||
" 'usage_metadata': {'candidates_billable_characters': 88.0,\n",
|
||||
" 'candidates_token_count': 24.0,\n",
|
||||
" 'prompt_billable_characters': 58.0,\n",
|
||||
" 'prompt_token_count': 12.0}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = ChatVertexAI() # default is `chat-bison`\n",
|
||||
"\n",
|
||||
"result = chat.generate([messages])\n",
|
||||
"pprint(result.generations[0][0].generation_info)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tool calling (a.k.a. function calling) with Gemini\n",
|
||||
"\n",
|
||||
"We can pass tool definitions to Gemini models to get the model to invoke those tools when appropriate. This is useful not only for LLM-powered tool use but also for getting structured outputs out of models more generally.\n",
|
||||
"\n",
|
||||
"With `ChatVertexAI.bind_tools()`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to a Gemini tool schema, which looks like:\n",
|
||||
"```python\n",
|
||||
"{\n",
|
||||
" \"name\": \"...\", # tool name\n",
|
||||
" \"description\": \"...\", # tool description\n",
|
||||
" \"parameters\": {...} # tool input schema as JSONSchema\n",
|
||||
"}\n",
|
||||
"```"
|
||||
"The LangChain VertexAI integration lives in the `langchain-google-vertexai` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'GetWeather', 'arguments': '{\"location\": \"San Francisco, CA\"}'}}, response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'citation_metadata': None, 'usage_metadata': {'prompt_token_count': 41, 'candidates_token_count': 7, 'total_token_count': 48}}, id='run-05e760dc-0682-4286-88e1-5b23df69b083-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'cd2499c4-4513-4059-bfff-5321b6e922d0'}])"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetWeather(BaseModel):\n",
|
||||
" \"\"\"Get the current weather in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = ChatVertexAI(model=\"gemini-pro\", temperature=0)\n",
|
||||
"llm_with_tools = llm.bind_tools([GetWeather])\n",
|
||||
"ai_msg = llm_with_tools.invoke(\n",
|
||||
" \"what is the weather like in San Francisco\",\n",
|
||||
")\n",
|
||||
"ai_msg"
|
||||
"%pip install -qU langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The tool calls can be access via the `AIMessage.tool_calls` attribute, where they are extracted in a model-agnostic format:"
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import ChatVertexAI\n",
|
||||
"\n",
|
||||
"llm = ChatVertexAI(\n",
|
||||
" model=\"gemini-1.5-flash-001\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" max_retries=6,\n",
|
||||
" stop=None,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetWeather',\n",
|
||||
" 'args': {'location': 'San Francisco, CA'},\n",
|
||||
" 'id': 'cd2499c4-4513-4059-bfff-5321b6e922d0'}]"
|
||||
"AIMessage(content=\"J'adore programmer. \\n\", response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 20, 'candidates_token_count': 7, 'total_token_count': 27}}, id='run-7032733c-d05c-4f0c-a17a-6c575fdd1ae0-0', usage_metadata={'input_tokens': 20, 'output_tokens': 7, 'total_tokens': 27})"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ai_msg.tool_calls"
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"J'adore programmer. \n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For a complete guide on tool calling [head here](/docs/how_to/function_calling)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Structured outputs\n",
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"Many applications require structured model outputs. Tool calling makes it much easier to do this reliably. The [with_structured_outputs](https://api.python.langchain.com/en/latest/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) constructor provides a simple interface built on top of tool calling for getting structured outputs out of a model. For a complete guide on structured outputs [head here](/docs/how_to/structured_output).\n",
|
||||
"\n",
|
||||
"### ChatVertexAI.with_structured_outputs()\n",
|
||||
"\n",
|
||||
"To get structured outputs from our Gemini model all we need to do is to specify a desired schema, either as a Pydantic class or as a JSON schema, "
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Person(name='Stefan', age=13)"
|
||||
"AIMessage(content='Ich liebe Programmieren. \\n', response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 15, 'candidates_token_count': 8, 'total_token_count': 23}}, id='run-c71955fd-8dc1-422b-88a7-853accf4811b-0', usage_metadata={'input_tokens': 15, 'output_tokens': 8, 'total_tokens': 23})"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
@ -471,139 +212,36 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"class Person(BaseModel):\n",
|
||||
" \"\"\"Save information about a person.\"\"\"\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
" name: str = Field(..., description=\"The person's name.\")\n",
|
||||
" age: int = Field(..., description=\"The person's age.\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"structured_llm = llm.with_structured_output(Person)\n",
|
||||
"structured_llm.invoke(\"Stefan is already 13 years old\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### [Legacy] Using `create_structured_runnable()`\n",
|
||||
"\n",
|
||||
"The legacy wasy to get structured outputs is using the `create_structured_runnable` constructor:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import create_structured_runnable\n",
|
||||
"\n",
|
||||
"chain = create_structured_runnable(Person, llm)\n",
|
||||
"chain.invoke(\"My name is Erick and I'm 27 years old\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Asynchronous calls\n",
|
||||
"\n",
|
||||
"We can make asynchronous calls via the Runnables [Async Interface](/docs/concepts#interface)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# for running these examples in the notebook:\n",
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=' अहं प्रोग्रामनं प्रेमामि')"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"system = (\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"human = \"{text}\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI(model=\"chat-bison\", max_tokens=1000, temperature=0.5)\n",
|
||||
"chain = prompt | chat\n",
|
||||
"\n",
|
||||
"asyncio.run(\n",
|
||||
" chain.ainvoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"Sanskrit\",\n",
|
||||
" \"text\": \"I love programming\",\n",
|
||||
" }\n",
|
||||
" )\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Streaming calls\n",
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"We can also stream outputs via the `stream` method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" The five most populous countries in the world are:\n",
|
||||
"1. China (1.4 billion)\n",
|
||||
"2. India (1.3 billion)\n",
|
||||
"3. United States (331 million)\n",
|
||||
"4. Indonesia (273 million)\n",
|
||||
"5. Pakistan (220 million)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"human\", \"List out the 5 most populous countries in the world\")]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI()\n",
|
||||
"\n",
|
||||
"chain = prompt | chat\n",
|
||||
"\n",
|
||||
"for chunk in chain.stream({}):\n",
|
||||
" sys.stdout.write(chunk.content)\n",
|
||||
" sys.stdout.flush()"
|
||||
"For detailed documentation of all ChatVertexAI features and configurations, like how to send multimodal inputs and configure safety settings, head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -627,5 +265,5 @@
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user