mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-05 12:48:12 +00:00
fmt
This commit is contained in:
parent
47b386d28f
commit
87d8012ef6
@ -9,6 +9,7 @@ from typing import (
|
||||
Optional,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from typing_extensions import override
|
||||
@ -65,6 +66,8 @@ class BaseGenerationOutputParser(
|
||||
):
|
||||
"""Base class to parse the output of an LLM call."""
|
||||
|
||||
return_message: bool = False
|
||||
|
||||
@property
|
||||
@override
|
||||
def InputType(self) -> Any:
|
||||
@ -75,9 +78,12 @@ class BaseGenerationOutputParser(
|
||||
@override
|
||||
def OutputType(self) -> type[T]:
|
||||
"""Return the output type for the parser."""
|
||||
# even though mypy complains this isn't valid,
|
||||
# it is good enough for pydantic to build the schema from
|
||||
return T # type: ignore[misc]
|
||||
if self.return_message:
|
||||
return cast(type[T], AnyMessage)
|
||||
else:
|
||||
# even though mypy complains this isn't valid,
|
||||
# it is good enough for pydantic to build the schema from
|
||||
return T # type: ignore[misc]
|
||||
|
||||
def invoke(
|
||||
self,
|
||||
@ -86,7 +92,7 @@ class BaseGenerationOutputParser(
|
||||
**kwargs: Any,
|
||||
) -> T:
|
||||
if isinstance(input, BaseMessage):
|
||||
return self._call_with_config(
|
||||
parsed = self._call_with_config(
|
||||
lambda inner_input: self.parse_result(
|
||||
[ChatGeneration(message=inner_input)]
|
||||
),
|
||||
@ -94,6 +100,10 @@ class BaseGenerationOutputParser(
|
||||
config,
|
||||
run_type="parser",
|
||||
)
|
||||
if self.return_message:
|
||||
return cast(T, input.model_copy(update={"parsed": parsed}))
|
||||
else:
|
||||
return parsed
|
||||
else:
|
||||
return self._call_with_config(
|
||||
lambda inner_input: self.parse_result([Generation(text=inner_input)]),
|
||||
@ -109,7 +119,7 @@ class BaseGenerationOutputParser(
|
||||
**kwargs: Optional[Any],
|
||||
) -> T:
|
||||
if isinstance(input, BaseMessage):
|
||||
return await self._acall_with_config(
|
||||
parsed = await self._acall_with_config(
|
||||
lambda inner_input: self.aparse_result(
|
||||
[ChatGeneration(message=inner_input)]
|
||||
),
|
||||
@ -117,6 +127,10 @@ class BaseGenerationOutputParser(
|
||||
config,
|
||||
run_type="parser",
|
||||
)
|
||||
if self.return_message:
|
||||
return cast(T, input.model_copy(update={"parsed": parsed}))
|
||||
else:
|
||||
return parsed
|
||||
else:
|
||||
return await self._acall_with_config(
|
||||
lambda inner_input: self.aparse_result([Generation(text=inner_input)]),
|
||||
@ -155,6 +169,8 @@ class BaseOutputParser(
|
||||
return "boolean_output_parser"
|
||||
""" # noqa: E501
|
||||
|
||||
return_message: bool = False
|
||||
|
||||
@property
|
||||
@override
|
||||
def InputType(self) -> Any:
|
||||
@ -171,6 +187,9 @@ class BaseOutputParser(
|
||||
Raises:
|
||||
TypeError: If the class doesn't have an inferable OutputType.
|
||||
"""
|
||||
if self.return_message:
|
||||
return cast(type[T], AnyMessage)
|
||||
|
||||
for base in self.__class__.mro():
|
||||
if hasattr(base, "__pydantic_generic_metadata__"):
|
||||
metadata = base.__pydantic_generic_metadata__
|
||||
@ -190,7 +209,7 @@ class BaseOutputParser(
|
||||
**kwargs: Any,
|
||||
) -> T:
|
||||
if isinstance(input, BaseMessage):
|
||||
return self._call_with_config(
|
||||
parsed = self._call_with_config(
|
||||
lambda inner_input: self.parse_result(
|
||||
[ChatGeneration(message=inner_input)]
|
||||
),
|
||||
@ -198,6 +217,10 @@ class BaseOutputParser(
|
||||
config,
|
||||
run_type="parser",
|
||||
)
|
||||
if self.return_message:
|
||||
return cast(T, input.model_copy(update={"parsed": parsed}))
|
||||
else:
|
||||
return parsed
|
||||
else:
|
||||
return self._call_with_config(
|
||||
lambda inner_input: self.parse_result([Generation(text=inner_input)]),
|
||||
@ -213,7 +236,7 @@ class BaseOutputParser(
|
||||
**kwargs: Optional[Any],
|
||||
) -> T:
|
||||
if isinstance(input, BaseMessage):
|
||||
return await self._acall_with_config(
|
||||
parsed = await self._acall_with_config(
|
||||
lambda inner_input: self.aparse_result(
|
||||
[ChatGeneration(message=inner_input)]
|
||||
),
|
||||
@ -221,6 +244,10 @@ class BaseOutputParser(
|
||||
config,
|
||||
run_type="parser",
|
||||
)
|
||||
if self.return_message:
|
||||
return cast(T, input.model_copy(update={"parsed": parsed}))
|
||||
else:
|
||||
return parsed
|
||||
else:
|
||||
return await self._acall_with_config(
|
||||
lambda inner_input: self.aparse_result([Generation(text=inner_input)]),
|
||||
|
@ -10,7 +10,6 @@ import sys
|
||||
import warnings
|
||||
from io import BytesIO
|
||||
from math import ceil
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
@ -85,11 +84,7 @@ from langchain_core.utils.function_calling import (
|
||||
convert_to_openai_function,
|
||||
convert_to_openai_tool,
|
||||
)
|
||||
from langchain_core.utils.pydantic import (
|
||||
PydanticBaseModel,
|
||||
TypeBaseModel,
|
||||
is_basemodel_subclass,
|
||||
)
|
||||
from langchain_core.utils.pydantic import TypeBaseModel, is_basemodel_subclass
|
||||
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
|
||||
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
|
||||
from typing_extensions import Self
|
||||
@ -777,7 +772,7 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
):
|
||||
message = response.choices[0].message # type: ignore[attr-defined]
|
||||
if hasattr(message, "parsed"):
|
||||
generations[0].message.parsed = message.parsed
|
||||
cast(AIMessage, generations[0].message).parsed = message.parsed
|
||||
# For backwards compatibility.
|
||||
generations[0].message.additional_kwargs["parsed"] = message.parsed
|
||||
if hasattr(message, "refusal"):
|
||||
@ -1474,17 +1469,18 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
output_parser: Runnable = PydanticToolsParser(
|
||||
tools=[schema], # type: ignore[list-item]
|
||||
first_tool_only=True, # type: ignore[list-item]
|
||||
return_message=True,
|
||||
)
|
||||
else:
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=tool_name, first_tool_only=True
|
||||
key_name=tool_name, first_tool_only=True, return_message=True
|
||||
)
|
||||
elif method == "json_mode":
|
||||
llm = self.bind(response_format={"type": "json_object"})
|
||||
output_parser = (
|
||||
PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type]
|
||||
PydanticOutputParser(pydantic_object=schema, return_message=True) # type: ignore[arg-type]
|
||||
if is_pydantic_schema
|
||||
else JsonOutputParser()
|
||||
else JsonOutputParser(return_message=True)
|
||||
)
|
||||
elif method == "json_schema":
|
||||
if schema is None:
|
||||
@ -1496,10 +1492,10 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
llm = self.bind(response_format=response_format)
|
||||
if is_pydantic_schema:
|
||||
output_parser = _oai_structured_outputs_parser.with_types(
|
||||
output_type=cast(type, schema)
|
||||
output_type=AIMessage
|
||||
)
|
||||
else:
|
||||
output_parser = JsonOutputParser()
|
||||
output_parser = JsonOutputParser(return_message=True)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
||||
@ -1507,8 +1503,8 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
parser_assign = RunnablePassthrough.assign(raw=output_parser).assign(
|
||||
parsed=lambda x: x["raw"].parsed, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
@ -2231,15 +2227,15 @@ def _convert_to_openai_response_format(
|
||||
|
||||
|
||||
@chain
|
||||
def _oai_structured_outputs_parser(ai_msg: AIMessage) -> PydanticBaseModel:
|
||||
if ai_msg.additional_kwargs.get("parsed"):
|
||||
return ai_msg.additional_kwargs["parsed"]
|
||||
def _oai_structured_outputs_parser(ai_msg: AIMessage) -> AIMessage:
|
||||
if ai_msg.parsed is not None:
|
||||
return ai_msg
|
||||
elif ai_msg.additional_kwargs.get("refusal"):
|
||||
raise OpenAIRefusalError(ai_msg.additional_kwargs["refusal"])
|
||||
else:
|
||||
raise ValueError(
|
||||
"Structured Output response does not have a 'parsed' field nor a 'refusal' "
|
||||
"field. Received message:\n\n{ai_msg}"
|
||||
f"field. Received message:\n\n{ai_msg}"
|
||||
)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user