mirror of
https://github.com/hwchase17/langchain.git
synced 2026-01-04 15:34:50 +00:00
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
@@ -0,0 +1,111 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# MosaicML embeddings\n",
|
||||
"\n",
|
||||
"[MosaicML](https://docs.mosaicml.com/en/latest/inference.html) offers a managed inference service. You can either use a variety of open source models, or deploy your own.\n",
|
||||
"\n",
|
||||
"This example goes over how to use LangChain to interact with MosaicML Inference for text embedding."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain\n",
|
||||
"\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"MOSAICML_API_TOKEN = getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"MOSAICML_API_TOKEN\"] = MOSAICML_API_TOKEN"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import MosaicMLInstructorEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = MosaicMLInstructorEmbeddings(\n",
|
||||
" query_instruction=\"Represent the query for retrieval: \"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_text = \"This is a test query.\"\n",
|
||||
"query_result = embeddings.embed_query(query_text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"document_text = \"This is a test document.\"\n",
|
||||
"document_result = embeddings.embed_documents([document_text])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"query_numpy = np.array(query_result)\n",
|
||||
"document_numpy = np.array(document_result[0])\n",
|
||||
"similarity = np.dot(query_numpy, document_numpy) / (\n",
|
||||
" np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)\n",
|
||||
")\n",
|
||||
"print(f\"Cosine similarity between document and query: {similarity}\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
Reference in New Issue
Block a user