mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-15 07:36:08 +00:00
x
This commit is contained in:
parent
18c1d8a50c
commit
8868c6b1ff
@ -49,6 +49,63 @@ def test_stream() -> None:
|
|||||||
assert "model_name" in full.response_metadata
|
assert "model_name" in full.response_metadata
|
||||||
|
|
||||||
|
|
||||||
|
async def test_astream() -> None:
|
||||||
|
"""Test streaming tokens from Anthropic."""
|
||||||
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
||||||
|
|
||||||
|
full: Optional[BaseMessageChunk] = None
|
||||||
|
chunks_with_input_token_counts = 0
|
||||||
|
chunks_with_output_token_counts = 0
|
||||||
|
async for token in llm.astream("I'm Pickle Rick"):
|
||||||
|
assert isinstance(token.content, str)
|
||||||
|
full = token if full is None else full + token
|
||||||
|
assert isinstance(token, AIMessageChunk)
|
||||||
|
if token.usage_metadata is not None:
|
||||||
|
if token.usage_metadata.get("input_tokens"):
|
||||||
|
chunks_with_input_token_counts += 1
|
||||||
|
if token.usage_metadata.get("output_tokens"):
|
||||||
|
chunks_with_output_token_counts += 1
|
||||||
|
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
|
||||||
|
raise AssertionError(
|
||||||
|
"Expected exactly one chunk with input or output token counts. "
|
||||||
|
"AIMessageChunk aggregation adds counts. Check that "
|
||||||
|
"this is behaving properly."
|
||||||
|
)
|
||||||
|
# check token usage is populated
|
||||||
|
assert isinstance(full, AIMessageChunk)
|
||||||
|
assert full.usage_metadata is not None
|
||||||
|
assert full.usage_metadata["input_tokens"] > 0
|
||||||
|
assert full.usage_metadata["output_tokens"] > 0
|
||||||
|
assert full.usage_metadata["total_tokens"] > 0
|
||||||
|
assert (
|
||||||
|
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
||||||
|
== full.usage_metadata["total_tokens"]
|
||||||
|
)
|
||||||
|
assert "stop_reason" in full.response_metadata
|
||||||
|
assert "stop_sequence" in full.response_metadata
|
||||||
|
|
||||||
|
# Check expected raw API output
|
||||||
|
async_client = llm._async_client
|
||||||
|
params: dict = {
|
||||||
|
"model": MODEL_NAME,
|
||||||
|
"max_tokens": 1024,
|
||||||
|
"messages": [{"role": "user", "content": "hi"}],
|
||||||
|
"temperature": 0.0,
|
||||||
|
}
|
||||||
|
stream = await async_client.messages.create(**params, stream=True)
|
||||||
|
async for event in stream:
|
||||||
|
if event.type == "message_start":
|
||||||
|
assert event.message.usage.input_tokens > 1
|
||||||
|
# Note: this single output token included in message start event
|
||||||
|
# does not appear to contribute to overall output token counts. It
|
||||||
|
# is excluded from the total token count.
|
||||||
|
assert event.message.usage.output_tokens == 1
|
||||||
|
elif event.type == "message_delta":
|
||||||
|
assert event.usage.output_tokens > 1
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
async def test_stream_usage() -> None:
|
async def test_stream_usage() -> None:
|
||||||
model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg]
|
model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg]
|
||||||
async for token in model.astream("hi"):
|
async for token in model.astream("hi"):
|
||||||
|
Loading…
Reference in New Issue
Block a user