Merge branch 'master' into sqldocstore_postgres_compat

This commit is contained in:
Alex Lee 2025-03-18 08:12:28 -07:00 committed by GitHub
commit 88b08849f4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 25 additions and 67 deletions

View File

@ -62,23 +62,25 @@
},
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent, load_tools\n",
"from langchain.agents import AgentExecutor, OpenAIFunctionsAgent\n",
"from langchain.tools import Tool\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"tools = load_tools(\n",
" [\"awslambda\"],\n",
" awslambda_tool_name=\"email-sender\",\n",
" awslambda_tool_description=\"sends an email with the specified content to test@testing123.com\",\n",
" function_name=\"testFunction1\",\n",
"tools = Tool(\n",
" name=\"email-sender\",\n",
" description=\"Sends an email with the specified content to test@testing123.com\",\n",
" func=lambda input_text: f\"Email sent to test@testing123.com with content: {input_text}\",\n",
")\n",
"\n",
"agent = initialize_agent(\n",
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
")\n",
"agent = OpenAIFunctionsAgent(llm=llm, tools=[tools])\n",
"\n",
"agent.run(\"Send an email to test@testing123.com saying hello world.\")"
"agent_executor = AgentExecutor(agent=agent, tools=[tools], verbose=True)\n",
"\n",
"agent_executor.invoke(\n",
" {\"input\": \" Send an email to test@testing123.com saying hello world.\"}\n",
")"
]
},
{

View File

@ -45,24 +45,24 @@ class BaseImageBlobParser(BaseBlobParser):
"""
try:
from PIL import Image as Img
with blob.as_bytes_io() as buf:
if blob.mimetype == "application/x-npy":
img = Img.fromarray(numpy.load(buf))
else:
img = Img.open(buf)
content = self._analyze_image(img)
logger.debug("Image text: %s", content.replace("\n", "\\n"))
yield Document(
page_content=content,
metadata={**blob.metadata, **{"source": blob.source}},
)
except ImportError:
raise ImportError(
"`Pillow` package not found, please install it with "
"`pip install Pillow`"
)
with blob.as_bytes_io() as buf:
if blob.mimetype == "application/x-npy":
img = Img.fromarray(numpy.load(buf))
else:
img = Img.open(buf)
content = self._analyze_image(img)
logger.debug("Image text: %s", content.replace("\n", "\\n"))
yield Document(
page_content=content,
metadata={**blob.metadata, **{"source": blob.source}},
)
class RapidOCRBlobParser(BaseImageBlobParser):
"""Parser for extracting text from images using the RapidOCR library.

View File

@ -88,8 +88,6 @@ from typing_extensions import Self
from langchain_groq.version import __version__
WARNED_DEFAULT_MODEL = False
class ChatGroq(BaseChatModel):
"""`Groq` Chat large language models API.
@ -305,7 +303,7 @@ class ChatGroq(BaseChatModel):
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
model_name: str = Field(default="mixtral-8x7b-32768", alias="model")
model_name: str = Field(alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
@ -353,27 +351,6 @@ class ChatGroq(BaseChatModel):
populate_by_name=True,
)
@model_validator(mode="before")
@classmethod
def warn_default_model(cls, values: Dict[str, Any]) -> Any:
"""Warning anticipating removal of default model."""
# TODO(ccurme): remove this warning in 0.3.0 when default model is removed
global WARNED_DEFAULT_MODEL
if (
"model" not in values
and "model_name" not in values
and not WARNED_DEFAULT_MODEL
):
warnings.warn(
"Groq is retiring the default model for ChatGroq, mixtral-8x7b-32768, "
"on March 20, 2025. Requests with the default model will start failing "
"on that date. Version 0.3.0 of langchain-groq will remove the "
"default. Please specify `model` explicitly, e.g., "
"`model='mistral-saba-24b'` or `model='llama-3.3-70b-versatile'`.",
)
WARNED_DEFAULT_MODEL = True
return values
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Any:

View File

@ -2,7 +2,6 @@
import json
import os
import warnings
from typing import Any
from unittest.mock import AsyncMock, MagicMock, patch
@ -280,23 +279,3 @@ def test_groq_serialization() -> None:
# Ensure a None was preserved
assert llm.groq_api_base == llm2.groq_api_base
def test_groq_warns_default_model() -> None:
"""Test that a warning is raised if a default model is used."""
# Delete this test in 0.3 release, when the default model is removed.
# Test no warning if model is specified
with warnings.catch_warnings():
warnings.simplefilter("error")
ChatGroq(model="foo")
# Test warns if default model is used
with pytest.warns(match="default model"):
ChatGroq()
# Test only warns once
with warnings.catch_warnings():
warnings.simplefilter("error")
ChatGroq()