add xml agent notebook

This commit is contained in:
Harrison Chase 2023-07-31 07:33:22 -07:00
parent a8be207ea3
commit 893f3014af
2 changed files with 149 additions and 274 deletions

View File

@ -1,274 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "9926203f",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = \"\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "45bc4149",
"metadata": {},
"outputs": [],
"source": [
"agent_instructions = \"\"\"You are a helpful assistant. Help the user answer any questions.\n",
"\n",
"You have access to the following tools:\n",
"\n",
"{tools}\n",
"\n",
"In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. \\\n",
"You will then get back a response in the form <observation></observation>\n",
"For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:\n",
"\n",
"<tool>search</tool><tool_input>weather in SF</tool_input>\n",
"<observation>64 degrees</observation>\n",
"\n",
"When you are done, respond with a final answer between <final_answer></final_answer>. For example:\n",
"\n",
"<final_answer>The weather in SF is 64 degrees</final_answer>\n",
"\n",
"Begin!\n",
"\n",
"Question: {question}\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4da4c0d2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.14) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import ChatPromptTemplate, AIMessagePromptTemplate\n",
"from langchain.agents import tool"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b81e9120",
"metadata": {},
"outputs": [],
"source": [
"model = ChatAnthropic(model=\"claude-2\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5271f612",
"metadata": {},
"outputs": [],
"source": [
"prompt_template = ChatPromptTemplate.from_template(agent_instructions) + AIMessagePromptTemplate.from_template(\"{intermediate_steps}\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "83780d81",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt_template | model.bind(stop=[\"</tool_input>\", \"</final_answer>\"])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c091d0e1",
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def search(query: str) -> str:\n",
" \"\"\"Search things about current events.\"\"\"\n",
" return \"32 degrees\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1e81b05d",
"metadata": {},
"outputs": [],
"source": [
"tool_list = [search]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "5f0d986f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool, AgentExecutor, BaseSingleActionAgent\n",
"from typing import List, Tuple, Any, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"\n",
"\n",
"class AnthropicAgent(BaseSingleActionAgent):\n",
" \n",
" tools: List[Tool]\n",
" chain: Any\n",
"\n",
" @property\n",
" def input_keys(self):\n",
" return [\"input\"]\n",
"\n",
" def plan(\n",
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
" ) -> Union[AgentAction, AgentFinish]:\n",
" \"\"\"Given input, decided what to do.\n",
"\n",
" Args:\n",
" intermediate_steps: Steps the LLM has taken to date,\n",
" along with observations\n",
" **kwargs: User inputs.\n",
"\n",
" Returns:\n",
" Action specifying what tool to use.\n",
" \"\"\"\n",
" log = \"\"\n",
" for action, observation in intermediate_steps:\n",
" log += f\"<tool>{action.tool}</tool><tool_input>{action.tool_input}</tool_input><observation>{observation}</observation>\"\n",
" tools = \"\"\n",
" for tool in self.tools:\n",
" tools += f\"{tool.name}: {tool.description}\\n\"\n",
" response = self.chain.invoke({\"intermediate_steps\": log, \"tools\": tools, \"question\": kwargs[\"input\"]})\n",
" if \"</tool>\" in response.content:\n",
" t, ti = response.content.split(\"</tool>\")\n",
" _t = t.split(\"<tool>\")[1]\n",
" _ti = ti.split(\"<tool_input>\")[1]\n",
" return AgentAction(tool=_t, tool_input=_ti, log=response.content)\n",
" elif \"<final_answer>\" in response.content:\n",
" t, ti = response.content.split(\"<final_answer>\")\n",
" return AgentFinish(return_values={\"output\": ti}, log=response.content)\n",
" else:\n",
" raise ValueError\n",
"\n",
" async def aplan(\n",
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
" ) -> Union[AgentAction, AgentFinish]:\n",
" \"\"\"Given input, decided what to do.\n",
"\n",
" Args:\n",
" intermediate_steps: Steps the LLM has taken to date,\n",
" along with observations\n",
" **kwargs: User inputs.\n",
"\n",
" Returns:\n",
" Action specifying what tool to use.\n",
" \"\"\"\n",
" raise ValueError"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "315361c5",
"metadata": {},
"outputs": [],
"source": [
"agent = AnthropicAgent(tools=tool_list, chain=chain)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "bca6096f",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor(agent=agent, tools=tool_list, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "71b872b1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m <tool>search</tool>\n",
"<tool_input>weather in new york\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"\n",
"<final_answer>The weather in New York is 32 degrees\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The weather in New York is 32 degrees'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"whats the weather in New york?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cca87246",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,149 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "3c284df8",
"metadata": {},
"source": [
"# XML Agent\n",
"\n",
"Some language models (like Anthropic's Claude) are particularly good at reasoning/writing XML. This goes over how to use an agent that uses XML when prompting. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f9d2ead2",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import XMLAgent, tool, AgentExecutor\n",
"from langchain.chat_models import ChatAnthropic\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ebadf04f",
"metadata": {},
"outputs": [],
"source": [
"model = ChatAnthropic(model=\"claude-2\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6ce9f9a5",
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def search(query: str) -> str:\n",
" \"\"\"Search things about current events.\"\"\"\n",
" return \"32 degrees\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c589944e",
"metadata": {},
"outputs": [],
"source": [
"tool_list = [search]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2d8454be",
"metadata": {},
"outputs": [],
"source": [
"chain = LLMChain(\n",
" llm=model,\n",
" prompt=XMLAgent.get_default_prompt(),\n",
" output_parser=XMLAgent.get_default_output_parser()\n",
")\n",
"agent = XMLAgent(tools=tool_list, llm_chain=chain)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "bca6096f",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor(agent=agent, tools=tool_list, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "71b872b1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m <tool>search</tool>\n",
"<tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"\n",
"<final_answer>The weather in New York is 32 degrees\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The weather in New York is 32 degrees'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"whats the weather in New york?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cca87246",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}