mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-11 16:01:33 +00:00
Kay retriever (#10657)
- **Description**: Adding retrievers for [kay.ai](https://kay.ai) and SEC filings powered by Kay and Cybersyn. Kay provides context as a service: it's an API built for RAG. - **Issue**: N/A - **Dependencies**: Just added a dep to the [kay](https://pypi.org/project/kay/) package - **Tag maintainer**: @baskaryan @hwchase17 Discussed in slack - **Twtter handle:** [@vishalrohra_](https://twitter.com/vishalrohra_) --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -30,6 +30,7 @@ from langchain.retrievers.ensemble import EnsembleRetriever
|
||||
from langchain.retrievers.google_cloud_enterprise_search import (
|
||||
GoogleCloudEnterpriseSearchRetriever,
|
||||
)
|
||||
from langchain.retrievers.kay import KayAiRetriever
|
||||
from langchain.retrievers.kendra import AmazonKendraRetriever
|
||||
from langchain.retrievers.knn import KNNRetriever
|
||||
from langchain.retrievers.llama_index import (
|
||||
@@ -68,6 +69,7 @@ __all__ = [
|
||||
"ChaindeskRetriever",
|
||||
"ElasticSearchBM25Retriever",
|
||||
"GoogleCloudEnterpriseSearchRetriever",
|
||||
"KayAiRetriever",
|
||||
"KNNRetriever",
|
||||
"LlamaIndexGraphRetriever",
|
||||
"LlamaIndexRetriever",
|
||||
|
59
libs/langchain/langchain/retrievers/kay.py
Normal file
59
libs/langchain/langchain/retrievers/kay.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, List
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
|
||||
|
||||
class KayAiRetriever(BaseRetriever):
|
||||
"""
|
||||
Retriever for Kay.ai datasets.
|
||||
|
||||
To work properly, expects you to have KAY_API_KEY env variable set.
|
||||
You can get one for free at https://kay.ai/.
|
||||
"""
|
||||
|
||||
client: Any
|
||||
num_contexts: int
|
||||
|
||||
@classmethod
|
||||
def create(
|
||||
cls,
|
||||
dataset_id: str,
|
||||
data_types: List[str],
|
||||
num_contexts: int = 6,
|
||||
) -> KayAiRetriever:
|
||||
"""
|
||||
Create a KayRetriever given a Kay dataset id and a list of datasources.
|
||||
|
||||
Args:
|
||||
dataset_id: A dataset id category in Kay, like "company"
|
||||
data_types: A list of datasources present within a dataset. For
|
||||
"company" the corresponding datasources could be
|
||||
["10-K", "10-Q", "8-K", "PressRelease"].
|
||||
num_contexts: The number of documents to retrieve on each query.
|
||||
Defaults to 6.
|
||||
"""
|
||||
try:
|
||||
from kay.rag.retrievers import KayRetriever
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import kay python package. Please install it with "
|
||||
"`pip install kay`.",
|
||||
)
|
||||
|
||||
client = KayRetriever(dataset_id, data_types)
|
||||
return cls(client=client, num_contexts=num_contexts)
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
ctxs = self.client.query(query=query, num_context=self.num_contexts)
|
||||
docs = []
|
||||
for ctx in ctxs:
|
||||
page_content = ctx.pop("chunk_embed_text", None)
|
||||
if page_content is None:
|
||||
continue
|
||||
docs.append(Document(page_content=page_content, metadata={**ctx}))
|
||||
return docs
|
@@ -0,0 +1,24 @@
|
||||
"""Integration test for Kay.ai API Wrapper."""
|
||||
import pytest
|
||||
|
||||
from langchain.retrievers import KayAiRetriever
|
||||
from langchain.schema import Document
|
||||
|
||||
|
||||
@pytest.mark.requires("kay")
|
||||
def test_kay_retriever() -> None:
|
||||
retriever = KayAiRetriever.create(
|
||||
dataset_id="company",
|
||||
data_types=["10-K", "10-Q", "8-K", "PressRelease"],
|
||||
num_contexts=3,
|
||||
)
|
||||
docs = retriever.get_relevant_documents(
|
||||
"What were the biggest strategy changes and partnerships made by Roku "
|
||||
"in 2023?",
|
||||
)
|
||||
assert len(docs) == 3
|
||||
for doc in docs:
|
||||
assert isinstance(doc, Document)
|
||||
assert doc.page_content
|
||||
assert doc.metadata
|
||||
assert len(list(doc.metadata.items())) > 0
|
Reference in New Issue
Block a user