Kay retriever (#10657)

- **Description**: Adding retrievers for [kay.ai](https://kay.ai) and
SEC filings powered by Kay and Cybersyn. Kay provides context as a
service: it's an API built for RAG.
- **Issue**: N/A
- **Dependencies**: Just added a dep to the
[kay](https://pypi.org/project/kay/) package
- **Tag maintainer**: @baskaryan @hwchase17 Discussed in slack
- **Twtter handle:** [@vishalrohra_](https://twitter.com/vishalrohra_)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Palau
2023-09-25 16:10:13 -04:00
committed by GitHub
parent 5f13668fa0
commit 89ef440c14
10 changed files with 1729 additions and 1265 deletions

View File

@@ -30,6 +30,7 @@ from langchain.retrievers.ensemble import EnsembleRetriever
from langchain.retrievers.google_cloud_enterprise_search import (
GoogleCloudEnterpriseSearchRetriever,
)
from langchain.retrievers.kay import KayAiRetriever
from langchain.retrievers.kendra import AmazonKendraRetriever
from langchain.retrievers.knn import KNNRetriever
from langchain.retrievers.llama_index import (
@@ -68,6 +69,7 @@ __all__ = [
"ChaindeskRetriever",
"ElasticSearchBM25Retriever",
"GoogleCloudEnterpriseSearchRetriever",
"KayAiRetriever",
"KNNRetriever",
"LlamaIndexGraphRetriever",
"LlamaIndexRetriever",

View File

@@ -0,0 +1,59 @@
from __future__ import annotations
from typing import Any, List
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.schema import BaseRetriever, Document
class KayAiRetriever(BaseRetriever):
"""
Retriever for Kay.ai datasets.
To work properly, expects you to have KAY_API_KEY env variable set.
You can get one for free at https://kay.ai/.
"""
client: Any
num_contexts: int
@classmethod
def create(
cls,
dataset_id: str,
data_types: List[str],
num_contexts: int = 6,
) -> KayAiRetriever:
"""
Create a KayRetriever given a Kay dataset id and a list of datasources.
Args:
dataset_id: A dataset id category in Kay, like "company"
data_types: A list of datasources present within a dataset. For
"company" the corresponding datasources could be
["10-K", "10-Q", "8-K", "PressRelease"].
num_contexts: The number of documents to retrieve on each query.
Defaults to 6.
"""
try:
from kay.rag.retrievers import KayRetriever
except ImportError:
raise ImportError(
"Could not import kay python package. Please install it with "
"`pip install kay`.",
)
client = KayRetriever(dataset_id, data_types)
return cls(client=client, num_contexts=num_contexts)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
ctxs = self.client.query(query=query, num_context=self.num_contexts)
docs = []
for ctx in ctxs:
page_content = ctx.pop("chunk_embed_text", None)
if page_content is None:
continue
docs.append(Document(page_content=page_content, metadata={**ctx}))
return docs

View File

@@ -0,0 +1,24 @@
"""Integration test for Kay.ai API Wrapper."""
import pytest
from langchain.retrievers import KayAiRetriever
from langchain.schema import Document
@pytest.mark.requires("kay")
def test_kay_retriever() -> None:
retriever = KayAiRetriever.create(
dataset_id="company",
data_types=["10-K", "10-Q", "8-K", "PressRelease"],
num_contexts=3,
)
docs = retriever.get_relevant_documents(
"What were the biggest strategy changes and partnerships made by Roku "
"in 2023?",
)
assert len(docs) == 3
for doc in docs:
assert isinstance(doc, Document)
assert doc.page_content
assert doc.metadata
assert len(list(doc.metadata.items())) > 0