Fix/issue 1213 (#2932)

### Background

Continuing to implement all the interface methods defined by the
`VectorStore` class. This PR pertains to implementation of the
`max_marginal_relevance_search` method.

### Changes

- a `max_marginal_relevance_search` method implementation has been added
in `weaviate.py`
- tests have been added to the the new method
- vcr cassettes have been added for the weaviate tests

### Test Plan

Added tests for the `max_marginal_relevance_search` implementation

### Change Safety

- [x] I have added tests to cover my changes
This commit is contained in:
cs0lar
2023-04-16 21:11:30 +01:00
committed by GitHub
parent 4c02f4bc30
commit 8b9e02da9d
6 changed files with 1599 additions and 8 deletions

View File

@@ -0,0 +1,729 @@
interactions:
- request:
body: '{"input": [[8134], [2308], [43673]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '65'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R5W9OCPLPl/f4Vb723TpWIQNrvDgGRkwmCx7kCVARETiaB7D8/pc+umZobq8AU
Denu1Wut/Pd//fPPv01a3rPPv//5599XMXz+/V/fe7fkk/z7n3/+93/9888///z37/f/W3mv0/vt
Vrzz3/Lfn8X7dh///c8/0v+98/8W/eeffzflpGFN69f9MvIWnnbx7i9m87FBQt6VGfjhmzMj2ix8
XtuLCtWQbNg6XazMUY4gQIF5Vilv+xsarRVgKGGW4qXo7HIpja9K+7jJQIKF3vvT4zo/IT2zJIKD
3kR8UDZ3OB2mgq1fxttsH+f7DBF/JTOXo9Sn7e6Qac8bLYiXZFL6jYfh+dFiKpdZno4qa20Qnwsn
Jm72aMLP0wHN5KJga3mlmgPfnStw4qAi5rJcp+OOdxH4ejqnKprKsto+ywAlO75mj0VvIeZLgYKK
eG0R1xhRz9Bna8BhHhFcmzvh9/12naGVlhyI1Z1qMfiRZSPWNC/mWffanK7HrkBzulaJ+dpuEU9c
PNOKc+aSLXt7Md+CCuixXhvMQ/s+ntLTtQLTmdk079U8Hc5EG6BtxZ5OhMVodOnRhmMjbbB4nHnM
jgaXULzIW2Z0+9ofXX2dgeHNfWIGx51JsfAaKLuLSU79O/WFZWwAUK1uSXCa6zEz6B5Qci0+xJpv
NqkcNKoDu/pWMeOdrGKxPYYXWJ4uIUvczxGJXX/NUX1MGmYLa9fz8/XmoWdFdarZ/tqU9Rm5qHBQ
DLJ/NSESefWsYePomJzh5JrTc4joSjBxZvZ1aM3mbIch7G9Whpvd5l3SFBMKkpVgQqI8KKeo7HPI
5lXE1tYuNCd9RhLtoeCQBVNw7we5cBw0efsNM2vJEJK31SrI2OVJkmqxFxMRKoVXlFFimRR8MdOv
OcrW7wszon6GxGvUQ6imaEV2RaX3PGSNAfMim+PCEq3J4+k+/OKT4Ib6uA52XQKgxwGtbl3VT3sp
5yAqfKNMqkQ5dK43oditA7KTp2UpdqExgV3EjCpzYotJm9YZzE9DTLz5YdtPm8gBWGTxlvjlpi1H
1+0VUMhsQ9HtOKWDWskSJLzwiVFLcT9d/KsO53h/JgZ/b+PRaK8BlII7eMbQ3Z9eindQ7Qc7MWdV
9GKwTl0D32usMvuZ8h1dK2AtpRvxvv3NeKRaSDTznspueYj5/ugcAFddSAiVMp+eWOzNWW8GzLqH
OOZ1X08wfDqd+E4thIiWPICePQ60ASh88VRuBYqKitGhzSEeGfiAZmjPKUjJOp2eCU1gJ/dHHO4T
rx9399UM2p0sEaN6UtRsiazApqtrPL/XL7/polcAi+MjpfJ1aP2ueYMH6vF+weKdBGVVX57a6sjd
gfjbcymmFBkTbIbVjqSn+d4UaHHRYL9e9sQ6VoE51nORraxRH5m1NFxfvAVRoBymjnYcdSkz3IYj
TfJmxD1pYTw1apPBnjxMZhlFUzLp3lDkzosCq6eDXXJV7h20kY8RW3f7k5gehYuhOF57sl0GaTxl
m8MJvU024EWZjf63ngvo5puJHnf6uRSXqahXFy974d/+fDZXX0e1IYd41lzb8uOmIV7JxAypVMdd
KZ7eWlnR8XEmDs2dlJdTVMAPT5z0XonBnvIM7mGbM2e32Zb0YWsZfPGIxtxmPj8TjSJqOjEhSdmg
aSNPDjBFOpEj3jpoYgtXg7I5vphT8b3JVX3TQak8T8QdlLtoM3V/X/VyNrGN/AzReLuPHBYGMunU
VL45Ld+OAt98YOV10sT4GbUMTkbgsetqHfeca1GHJOuCqbAUraex60u/a3Y+FJ1geHAqUKzPAbNv
/qfjy20gapOU/fCVHQ1FRvv6/qRFt7dN8bzhCSX0NjCSxXnKs5c1wSHIbYYfn7f/24/VIxs/zNt7
TSw6AjLKkeOR3afciqruaw76cpGzred+UsG9d4DOo/3Ek9SVvRCqc0HfecLctJTT0S4PhSavU4Wq
0b6LJ+00UXA0vMarRV2ZbcAERtvrfUWcObGR1C1PCRDhb5g1q1bo7V9kBw1tgMiWrfVSvhzQHcqy
PhNval5x2ywdG1ZlssQafbXmrz4AHQ6MPcx7a07Z2enArLSSvp/4Y/7lT3PwEy8BJjTemixAUXtJ
yZq4iWjcIglBSYeR1lJ86wWPRlujWtsR/3acYnZpdQ9Qvk2J85RsfxFLcwupMznDEm7W/jRbvAPU
+vcd2S1VR/B2pgZIuvGI+c8LLvlZKhW4XxeCBItaEuK2f3jIiXFFdvZRpNTOogx2TW6wPemKePD2
NwNgmSUk4u93zIOSJyjtLJ3FC7lOKcbXO6RzY078h7GLxRJqBxL/U2J13+f9uPNHG9hTUslmdUvR
pBPBUTrX58Se7qYQBr0CKh1XogqejHKRxGMAF0lPqSzrSt8eB3MAqVdfxHbOueBmcPVQod8HOuyJ
a47y8pWg50mRSWy/jv3QJo6Bhlo6kKxbm0K+Q65BEn3WWK24nrZDkATgn9OM3k+l2jdrHofIOa8m
uuDjte/YbDhBt61TLK3Tcyz62bKAZq9d6N6sWjGKLWog3Tw8ssGfqRRSYzrQpHaPF33h9lOUrC1I
lV2MV0vVQWOidAnk++r4nc+39KXQyVgdVrsRi6jHJo93nxzdPuqJeMyfUJ9cPEXz/Y5T6fXRBW+d
lKLrpw6Zvc4Vfzq6mgLj0TtiKV5y9JGpASigPGXXbVT67IuPaFk4QGxzJ8zm7mcOrIPsRHzaaT3b
ausKakMKSeDUpsk55xjpEL0YvuuBP7oxPkEgWMqM7B71/JDrGlAlNontuTOzlmL5jprqzllALd3n
ct9VSDmoG+K8zYX4zisN1Cy08Gptlz0dVjZG9fZ9p8rhnaXcd9oGdqoJOKpxi0Sz6U/o7Tgj247n
tRCkevHVvjAz4t9QZn5O83kDcq1T4rERejoritNv3rKg7Iue2muTwvJRlcS6vpt0GpMiQEVsWszx
kSp4Jo823PqCYW22k1OxStQAvvznh7c9X70tA6TreUfII8BiWvimrX2/j4p3MvS//V1NQkZ4drae
/gjN4oRm/WaOlfxzEJPLFxmM90PDDN0rzUl5UBs1he3iZYEac9JO2qBNWvcmNk3f5TR3vEYly9pj
ru2P4otXCVQ3L2Br3ROCX8OWAxHuhv3mH+/mTQi3C5wZNiI7Zevl5qR1IlcICcW+/OPfF0W0+M3D
sB9n+NhBU1guewT8GHPJ9v7mGWX7K0q/88/7PY/Ogr5E4qAuJVQs3hnuNa9Np0nOdbAZ2tL5bmmX
fD4ec7A29gEv8Cfqp81rJ8GX/xILN0+THubtCWbT5oZnGzymfHV71oBPC5sEzgb1zTPQIrjUZE8X
J05RmbuJBCRz38SMNlY8XU0Zg52Aw9zD2++/+bJAj5QnnuWw9JlC3Br5buRiEe+XSAhVv4CYzx1K
z9ba5IfcUWBeKxbZLTZZyXMOCQqxypmnzOxy4b1ain54ve5no+h3EgKUf446Cc4vz+TeLLRWv/ka
WMY8Fd3z6cF7FT8ZuYSWKbt8lcEiHHbMGXZmOfkBOoASFXfmMHvyGUnNA7B16/zxjfE4mFQVt2DO
tuhjICmRDQOi6DJjulkl5USlRIZne8NMX/hDP+60YECv19rGC/deoNFeOPKPj7BM40XcJ/apRvFS
Db/8pS6nTdonYDxnLdkeCg9NGioV9OuHTa2WPQ8P+wjWmkioom2uMd83uwApFjsQommH8hNtpATt
7Fjgj+ooolXf5wCSs2ezrXDnfocmXqwOyv3XT04s1++dBZm5mtP3Nx69HMQdFNe5kptSEH+M7f6O
tI+bM3OlGr2ojsZ3PlZn5hiD50+nQ3CBbzyqktsNfVr2CbU3hhvx/SQ3+dU5a6jYEI2QT+P0o7na
OCiXPxsKLBT9cBIgI6InwH540If7RkHLy7TEalCx+I8PT6s1ZlZjFuZn2gYVyqXTnViO0iKmzYII
zqP1pCvqjj0PjWEGxWanMVzyMh1fIZ9WX35B4fzyfGEp5R2S+x5hjY3ZT694UIrJIetQjeJfvwBs
bYUqX3wRCc6z1U//rZg89NPdNi8/fY1XloF7yhxbAgrUITheV+JjO5vptx8Y7fk65k+00+B4aQ7s
obyZ4FKHclh1QUk2J+/lc6zEF8CH+4O5M0pLrqZZgi6rgLL1++ijyTVaGXVnHrAdgo0pT+4wA+bc
JRK0eRbz98zzIBben15N+2MQR4D6Q0AIxVM6abswXD1Pmown3TPNKX2AjkJBL3SxTu1eqp63CAW4
6oj3duSS//bDrJSS6VWG/U/vlw6Y0cnH2lHgdLo/Ew+V86PBgtvx2U/vg45huV/5mOt9YHLpebVh
vJ8a2odt6AuLrQ14hdaWWa9PLuihSipgKFj99GT/ua6PkqZH2pOYt+4Yj2UfZvDDdyLvccn3947D
9qYYLLLzyuTv4SbDrASPjk2FEH9fwxm0VvNkpj/U6If/mnWMNt96LfpGttUEFlctp/IZxpLXhXUA
x5Ue33l7MQVKPAc5x5fPfvxdrvm7gO9+k7VIrZTr60uNum2VUh5vN/0k6WqFiPsiX76clNPpxQc4
PjKdXdJ7hSZ0fk4ocU9AnKuv+4tio2D4nMs5c7dRaTL/qRvIkNUGI+VG0+7H75sLtehyXPXlp82a
BO58sSfOZNz8YfvsMagJqTHNT5+UX8PnBD9+pmtJFvf7VyahOJrtsTw4BloqhX1HWjnfEWOXMX/M
gnsCX/+IasrtYU7ttGlgqtfjL9/9x43xAYZTU7Kv/hDjDF0oXLru9NdvvKuu+Y+/k2C/mBB7xsMJ
9OPeYU6RMCEW552C5KBrqRffduZYXisP7HabMnd+UNLpGjgWvDeTRwL5Y5vDEGchLOCuMG9QsDkA
m1/QkfsDXbV534t3+7pD9D6u2Pa1jP9Hb9QZPuDlE+98QeZSDvhKPkzPrqMQfNlF6LxYMuZ88VDQ
yNNhjDdLFkRg+eIZDweNbtGTbc+QI36e2Qc4MPvOPHcb+NMm0mcA1rAnxPqo/qTmRw/9/ITO/SzQ
Tx/B9AxLcmhaH02L+3YGb6+8fJ+nC36Weg1to3bP1oEs+2MuMq5JtymiM+rm6FPLex0S4xky/2F8
0sm98fqnn7/8c5l2yoNaMFzXHilEfvwffyzUcovcs3hvchs8DV00aUsSP+Gij9YJRbFbBVSuep72
B368wI8v59v1zhySRIQwQzGnizFa+4vyOnhgyKhhehe80in6bAA6fNnS8aFc0ym1XhGogRWTC7kM
MbtdWwMyEnD244PTOI8vUJqXmm3168mf7tBocD62M7o8LUg/vspFgx5datMfX2X3Ust/9UPHQJbN
tq4qClE/GlRdvW+pOL47A+0qe0V++eFVt6RwPeCATnFQx+N3/eo3762vvuaZrFrQ6iTDf/3RpOoB
0s7Wab59n9BnkbJaVbPIIkYc2LEMTxShU/t5ks2s+vhjX48afPTgyswAyYjOZ7mDvn4lwwzNfCqx
HYZpWNzI1twVMecPUwO6KTRGGPrE4jO0w49Pke03/vQIMw2drGpk7pgVPd8f9RN0iSOY7ye6/40f
AjtZO/Llr6VYVXH3x//I2Y36Xz5/eoJ5dRGgaW1fD3AICpvOonwVT28j1dA8ty9El5VtL5NV5sFW
t1Wih1IupmY81T88w5onbf3BHL0DHPtgYLuSH/zqYE0e+vpFXz5Zx+we2RisbYbITz+Ir/5AyaRN
ON3zZywqPzfQY0wqEmhEQ8Pwcioog0pl/un6Tif3WFOQ8lP/6xdzgPhiI37Vtz/9mLKnt9aQmuxq
sn3ib//3lz9+gKftsCxZpaJOY9J1z0i424rRwN4ddt6gkEA132nxq0f5+Wrx8l1Rf7itvQYupdwx
LE81God3M4P9RHZ0nsV6/Ocv4+vu8/1e6cfvbGjPgcrsdzVDo24qoP3wuX2dPF9a+52N7tq6Ip5y
m/vVhFwKlq/pf/NN+fql6sa7LIgZXtx0nHdpBjw/UvriPhNCvA8WOlGnZvhUXsvx8WgkYN4yxXLV
h6mcPiQDFdvwgmUcaGm7TVoPUmguxPa6V8l+9XP5GCtiLY3WH9WbxFUd7zsW5PugHNytmcNKVA3Z
5k0Z8/dwlP78tuLrv32/ZwZVsQkI+fqZP78N+aBHNJ1reckrfElQy6sZ2/BRLUUqOYMmN9cjSTKX
9IOV7yzEPqnAkk5MwVeKcoBjYVzJdp1vY7HV1jUQS15TrmIHjaA9O/SiuyuV60sff+d1jfJ9fWTf
fjK5fd5ThA4nhqXpapoc1v0Eic9Kym+5aXIn/MxQupCHr94cfP646fefn80852nEbFXFDexjzWXm
9a2afFmRCdZiRb98JYobtZrJ8MVPghf9oqfVR5FhtXl/6LSZZ6WUujMDYoPnf/jfkWJ3AbbuHZxo
/bOkX38ZHdlcY/6eqILdSv+OLitMf/rNH8twTbWHED4h3fgQ0yBKDl9/EXdszMpvfAk0DTpiRd4C
iQTAgijUz+RUz44+Q4tQgefbfpNNQ1exuJdTAV9+y8xl+YyHZD5k0C3UB0a98xJ0be8PsB5fW/Kb
Z+J9aiqgc5vh5XXUyrEoHgVaPY3wp7dNNsaNB996xTN2lFJ5eZ8bcAfL+Os/KXHtGTw29+0Pr1L6
6PsGSubvmX+wi58/X6CPexnYtdQdxJfJ66R965U2eCrKkZyMCuLjSWE7G9187qc0h68fTHS68GPa
jPcazZJ6w3aqo6Cpfm8sTdRvi/lfPivdDiSHarVcYh6EN5MqGsiwTZfVn1+1fFmbAFbB9YrRDWU+
//XfqWVP4rnbwR+V225ALa9n9J0oPWptZzdB3s2uX/63SMdMvd7BuNQV2bh3Q0wnr51Bc7tFLNNI
gsao+9TwAW/x9Q+dWGL3TEYPMfpUgxx9z0cuCbqlpxnBIc3/3g8pBDYs6N6f8usva0jeSCvmhy33
RbrdNeiLv8RoPQm1Z51O6NufZCc9IsS110uBxzMQFB2jk8kPOKshxe2N/c5zpikmCbB+HVDRepXP
50F1AqLORmbv9FrwctceID02iKwX46vkbhGF8MVbts7mnfh8z+cgvj99Ylb6qR89L5r9+UvdTe76
uzGT77DQ7D0tNtdJDNaoJsjn45O5+afy5UV9lcDt1OF7XiDFbdG1F+Tr1zn5nRcxR+MdcuUDYVtT
BKaQzP0MvvwfS7V6SOn74GD01ePMzO5PNElsF8CGHSVCcqhj4YmjBI/GeOBxo/nmGE76ZfXFVyxM
M0fjN39o9dRD5r2dU9//+PS4PfsM2yiIR+/1pKvepC2Vd3VY8vBwDcH+FDlzv/VJ54OQUDjfR3Q4
KswcG29nwPV2ebAw9Z7ix79hu4y2hLinh8kf65EiuNtHtqW5aopLPgt/+vDHJ8w/vt7OghPz6/cs
pXrvFZDLbEMs36clLZywBksjFsN41pQjAxNgdRzvLPjqcfb1Y+GBu4SCHa4Rjx9XCa2ViyA/P2Dq
sVmsxnS2Jp7tP83JfkkKIsZYEvs1Pctvvk+wLZYGfr8r7I+owSEsQrr7PwAAAP//pJ1Lr6PAlqXn
9StKd0pfgTEQQc14m5cJXsa21GoBtjFgjA1EACHVfy/hc7vVgxp1DzOVx2nHY6+1vr3N2fKhQWu/
IjEMJr5BakdqnQ7hIPz6LQHLR3gghmYy0I0tgMyXbw879DmUcONVAafVdrN8yv7y868bT4zBysiL
BRVm8JEN1jRZwbfrpSI68sSR1aSZb+mhArLCPYif1BMdN734W393Bm5B6bs04IV9nX79rGbjcV9A
7UVCbtOp4M9/+ZGn477OEaBDfQmgtKxn5EnuJ6GHY1BBRs4CdHQvaJibNa+gvPgqcjceh51ZvsMI
FFXwVPcYkJh0mbjdn79+9m69CBLc+PRf/hiiQrr89AFp1/o9zGoncPKmv/jHT+b006SQLR7PXz9K
X8MxE2DVNSnm4FoNdLm5HRSumYs0n38VyxWHwp8/14s09eZ795Wg7fAPcmA+R0q1PcyB7CprIDXd
k1KtnHrpRGQJ6ffwoU80yiyYhacbMZ/OmMxebBhQPnw9jENcecup/oSA6bIluO261vu7X7/+snb3
pmE7PzwMoTBgcetXD7cDN8JdYnE/PtQs17Jtwc9fqRqj6HMouuUvbxCvWg26zJBq8B+/qYD//B//
DxMFu/9+oiA35zcGB632FuOb5OCSpyGJL58HaJPyGAKeuC+CoHIoeKYXNKBHkUGQhIthqhW1lEXZ
vyH/iwtvLhweQ4dlXMwu2i5Zqrjv4UEcWXSQVAks58lmYMq3ceCaJ0aflrXsIZosnWiBLBbf6+vS
AvCqTRIsYTwsVAGZFH8HBXmLgsDscqEl84EVE91X32DR4dpBTzOWYOVf+kAPudTDHL9KLBbnMJmG
N9MBXj1qxLkVBzoeUYSBe39YyLnzn2LJfM8GeBZCkg7JC2CXrUJZPKslCfbpB8yT4qSgENgqYJLx
0YxrvHXgI3dFQQeyhEYa4cHc9RUxhbDfOl4zByS4jFsHVqRY3LkZfNrejhzn0fCmjslSeIsSG08D
YJPJq+NQPj9fQkDTeGyGQU59eCKSRtTqqHh9l045FJ98hDnsfHRCd4UBnzH8kiKq0uQzF2MIv9oa
ID0qP0l/utsQPvvvjA5kvDe9+exjKBXkitTwVifz9LkIAEpLjnxWzAsKDC0XZa61iDOIIl0uYiNA
U+UccjnfGIBfL5GDH6maifZq8mImTdpDG8RHYoN9ShflKSpQWY86Us1HWNDw85SgPxsPFA2+qK8s
W+XyMyySQNbIrZlDnvdh4+0+RN87qzcKn9WF5rlCyOHNSp++RhNCdjc2eM7RWZ9H5tgCM4UCMatL
0WB7Ub9gWd4w2ItCS7+LrJcw5TSAfHDADRnkMgDt6XtCiLzpMAunRygVTZJj7lyIxTw+9BJCOVuQ
IxvXYs44MYOf6/2G5xK2yXK3HhWIhsFBB1+fikV2ugza574hjmGLYD37YwXvH5MjapXx3hiDwwVS
ex/+nXeKTkiDd1t9Yjiu8TAbj7YDJz+8oEuS9mDG14MPI1t/IPNWXxLyOz/ppcdECy+FN7un9wo+
Uj0jP/ejYX5/7BBeGscKeEaY6IycWwm/bSFiGLfaQOyXYkBrpC3Z9rcgTlwJMoffFTLxtG/I3fRX
aX+S2IC5dHmxttEdAj4wYmLpAk9pg1sIGTf2kTOIVzC6X+3LtuHzjTROeRXzRb8osDROE3Jqlk2I
1Rg5OBSBHgjDaSjmr+EIoKYKR6zDmdCpuK8Qtsd8H8zj7uItynnoAEsdHyna3i2W/uzegQzTHgXz
3QIz5f0SalWwoIPDnig9JZoNxnd9wm38OQ6DcsEZnLraJ4rfzADDjstgJoUWQlax0Lm4Xzvwvds5
SuBYD+RYeDHsT2cBIREiuk7c05D5OjphXuD4YaQDq0DmwcTEALo+zJZw6cGr0q7Ic4RXQSxCMsDX
yYn416agtLj1ATze3zkOgcvp8zccedBl60pcRqIJ/ehhLR/b6EkCfkj1IRzYiygYEo+M3SJ4/We6
3iGhCk/UGnDFOLxvAUye0okYmkho7zg+L9Fr6gXDshbNHB3xF3LhR8Y9dyl1mvG38vf5kdaH72Eu
KmKBo46CgME5KkbzWcXQGYFAlF73i+H2FC8QzrcncR+RCvj3Y9fCrxLskSHczWQOvciGVVa5KJF6
T8eHUOfgm+dhUMPoq893k7GlgQlaZJ9vd7rMxRhDX24OeFchs5mVSWqB5ZEoYK+UGfrn/evD6Oge
iWue7jod77EhtxdqEKPRVG/tbpUFcXcoAsxQDQwiu9hQIUZCLuVZbMj5XKRg4ccv2tbPo3zJ9sC3
ZkxMllR0Wdb0C7vgmSL9alwS3CLnDvK7YiBtfybF3IapL12qN8HYNkKwAjGpYHEWj8RI+UKfa99T
gASDFKmTaBX49Lna8Co/nQDmjFzM5c5h4L7hG+T2sl0s5pkL4AA+x239nnRSUcRJ2/snQRDd9Qk/
+0oSS9tFh+qV0aUYTgIQdrKD0OUie8tctDEEh+5JDs99XVDrwjDg1skBMsb9rZlrttJkNzt+kNrl
x2QWXUEDZ6V5BfR5unlrCuYMut3YkvPyrvSlVpz7X7335GtT9A6zz4Br9hFSmvWd4KjxY1CAeh9U
RjzquHaFELZDViCt82dvWRm2A/fmipH2yEa6LLA2pGqnWkh5HR1v0Q+2AZvUPOBZ3qsJHWiwAuZ2
AcgE79UbzxcDQyYxNWTvvu+hE1K/Bq+091ExBq1OL8LVhtq62si7sFMx7uE1hdUYhARF9ZUutaLe
5TNi/E1/tGT3EewQHmCckYM/6t46Jk0ML5V2DlioHJI90T8urELeQMh4fBI6VaQDMGJewfsbyfro
cqEBUZwghK7qCuYDUi1pYk8qCRbRTri7mNjACXJIlPhtexORulykRImIzrWUrmMyxKCO4JMcttfD
usNAOKemg1QJ8nT6+YnQvoeBIIMxWY7m9AXP2x4gUx4+w5IeRAhL4zwRpCpzsWjry4Z9XnZk+3nQ
bXoEkHEakDEflWZuxWEWt/qIji+86kszfX24+Q105U1Fp8egSmHUVzlyzPxV4NROUhCFoYxFATTF
9u8DGIT2B8u7O6JdHou5dNg7PTqW3L5Z8RnewZH9TEizRm6Y3+z8Bd+ODTEz3y1KRmcfSIdj/MDV
6/jx5vl1SeHUwF0wfzJWnyb+5gsA+B45U+054FPcz+Je8cVg8irNW/vnEkLz2zPI4x49+LSFrsjx
uYqQ8u3dZvHb9woru+uIy3+CYbyNsy89ZykgihwMwwoXdYUC8gnS7ToAa3frLWAlDCGOmZvFfkyN
L9z5jYEChmp0zLzPCntBrolaJK/i04ZyB5Z+sYinzllDPvqlgl6eBcjE7XOg7++Yw/FdnYi7bB0B
cdeM8k8PzISPwPo8PSrIzq8dOag40nvpeKxhXpQT2ep9sr6K9iKFHesHIzjg4c/fVItwJs4wN3T9
FjsFtDzug/cyZ97aJXEvj6Vtk6vZFMVyclEJZJj1+FUwSsNPqmHA5ywERPlkD69nuNCXRetuoMCe
rGEP83WGbiESpDHHeJhHuzBg7E8l8rb7NLe6GIM44j0s7L6HZqetkw078n7j0wQ8uqbv0x3K7O1M
vGe46hRndgpV7vRBR0V1kqX3dwp0lWeDkFz0dOGO9xCyX4Dxc/c8Jfj99TQITN1FNqxcsOmbD6xs
m8jq1ipZb4Kdw/fT5omrS2Uyd7Z2h26RnXHjdpbHfRpfg6+v+CWbf97qjxHD1258EFeYOo+6OxhA
xToDpDbtV192OLXAuxmP6LEXhGJ0GDYF5+dbCOYbDvXxHnod3F/uWQC/GHjrzpwkwH6zDCny/pnM
48O7wz20FGIPjKrPx861xJpqHHG96y6Z1iSv4cO6K4EUIGHATnpS4I0NBrx2fuhR5dJl8BFxx6At
mt5bL0EfSIV2PBAdRArdBXLCwyM7TAFj7ptk/eAygMbR9Qj65F2ymuorAHfGr5EzqzalyuT4wOsi
ij+vcRwm7+JzkAbPjGjR1xr2NhDuEF6nA3HuR9pQfLlx8KQyDxIQ3dQn8wwDYBNJCXaX2R9GHxc8
UHlRIX/+fPOLcJQGg6jg5Q9cM9k8LPX1hLH43Cfrp7VWOM5nD+/PteVxBwnbgH00T8xcBRMskyu4
MP5+FFKWV9YjKslGKd07X8x0zrdZqEL//A1SeaoALI1CC5flBYkVSkrBFanvwlE9peQ460FCKVtV
cioSFf3u47T5OQl0hxv+XtqUzmPKa5B9oZ4gt1GGVU/9/LfeKH6wWsPjWt3yBO8EI5jbZPG8jyBU
lo6Qe+WrYu7cMwO3+kVM/yzq39weIJDNDhEbBA9v00cFGkfSBNJYPovJnqtQ3vwCUfRK8dbno2Xg
ECYqCq6CSXvWU3o5b6MGGQ3ng2XTa6hNw5V4r0sFPtNHisHYMgxSImZNaAsOAhS08wMz4nNfrDI9
xzAodAmZMvcYcP9cYjCv2hTAhjzBfJ2FFao9WxLzuEoDzddUgjRosmCP8nMxza8FQ1c3JKTqxYWu
s3mLwbrDT+RJTeXNnQwhXDgnIXqe6ZRrSJbC5+Af8L7ni2G5i1wF724rBHxwTLw1hzaEccpISMnR
XscpEDLoGKYetMfA15fXK7zLyCmvpHAEM9krNZhh3B8+we4UJcOq1PEFhuv5ShwmM+iu9JMV3Kn0
Ie5YqsnnsXxXmATxl7j44oD52GmWPEofA/mNNerjTrBdGBhzSU64VQfK+uP693nn021ISA7rVBbU
9YDljRDOBp9CKKqnDB2PExloyXcWLM7giOfkSukvr8vV26yJkcRN8Z14ppPaIS3Q+TyU+tAIUv7z
K0TV4xrQUqEtVN17hSGs52SNpwjL/iv6kmP8AMWYRCwP5pDJMff9ht6mRzPcFy8TOXZoD9y1vAmC
ig2X6F/r2Sz7g+JD1ol1LON+bKbg8Ezl8mE/SWyNXLNmO2iBrZ4g70u1gnNPZAYF8+mIdo1PwxTI
BQecWnljLp1Mj2aukMP5Xmh4qTJen7+GKkCe2C9iox0B0+n+zeBXP3V4LfYULI8b2iZAjjL6nUf6
88NonV10GE/cMG/1UIhRTAPx5Or6L5/A26d+/fnJccvzwLH6HJn8risWgL4d5NPzQlRvlBuyt10G
fvT5jA6tgcDGT1L4y5PH3Z3Q9RiWJRR1aULux2KK5f0oAyiWUx0w7VHTl08z5XDzp8R56RlY31xY
/vwwlpQmLuY1Fl1IWMHa7k9cLBVjjpDn+JGY4eNNR3xFPjwPYMGyQU/6InrXC+CwZuO518eEin7q
yt9lNkmqHVp9op49g7F07WB9sNrAa93QwdoPc5LsnVVfh/4Mof/NL+gAsa1zF7yz4JPvUvwVHxGg
6WqEQOl4/i8vL8EsCBAevJmYwvWuj5OipnIUxnLAX2pUjHTYK2DjRcQc9lxBcD2Eksc0IZbQs/WW
jK1c6VffpU4MKe1kvQPl7O+Iaw+qzu/0y0Xc6gdReXfQe+X6wNI+OfXEtIPGo0WSb1MfL4G4nBEW
+Mc/Nn9HXJOhYNqvrxBseT3Y1qOgF6nrpcvtzqLgWXF0nbvEgtt6BbuT9Enoeq8x0K/1M+AjnS9o
fzn6YJeuNd7Oh7eepzqFjRdGeL/5tyXcaQY86scAqViDyRjVTgV+/r3fqQsg1+hsSDSbOZRk+y/t
rMutA80eL8i9sVmy+TMDtpwX4X6cjx6NjaaCWz4lx5cJk7H2dQXKq0aISbNjsf/l8+X0Pf/5qa+Y
2T68GscrZjd/vtqL8wWOFBrotvlfbIlFDstcp8GOue2SxTlcxh8PC7gRv4cZOae7YDfKTILTvPdm
YsT1j2/hw0U+0JXuDz7s0mOB/Aj4YA6rIycZSgzw2jEALM+UcYHUwD0yE6PziMiKNrTW24D0xcxB
91h9F5ZShYP1/V4aKqST8Ltf6BD0Q0M7B7dw6Y4EuWeH6qOrAAP89FG7AS/Z82/Tgs3Oy5Eu9Z63
U9GVk6ChqsGw8TgqasEo/fwzazw+xRfFoStnbaeQgweYhHSy18FDdjiRow90ume1Rwpewj7A8re6
0VW4RwwcLnqD+y1vfan3tWEPKhE5F8Uq9o0gXaBzRisypzjzFtnBGbwGz5joC56HTY+VH/8jVuUy
yfRYvjPY9pP4stfpy68eXVucBq/LgQermNkB/LwvKsperwegXHZh4GfPXvF6omUzbZ8PuvebFVAQ
VXR9FeNFslXmtr2epZMkmBnwxCmPnFvxpu2P580hzIkVjaO+DuuUA/56f6AgsG1vdhyDg9pbToL3
c18n0+s9MXCfnHvMtss84NNDx/DhdFs+aIqEZvzpDt8NPmK6O36GNZDlAHqvsUD6Y3kV1JeOOVQ+
8ougJzgm+M2FdzB33woZ6WTq/QBmA4SmICLnBDGgeY9KKFl6guHm9/F4EzDc+ADx4+nS/OWVjd9u
vNXRZ3FEX8mg0osEG2/hCW45yDxgjAHLqMM+0t68IGlCiy5mXw/ja8k1CABtNr0KC/AZewM2Y9Zu
+q94nOjOipyQVCb+pmeUD8sRJDvdIPr5wzckU2oGojhCxLp31rBvUc3D+FxHRJ2J0yw74VlL6vGF
iLa4mj673MWCk/6Q0OHgrANuo4wR9Ux28UVznIY+bwIHhZubYO64V+nOxzsfsnfG2XjRWNAn9wl+
+oWsbj8U6+2sddD/Xi6bns76ut7VFE6QfoNl2GE6a6+K++UbVKhvZaDVOlUgGKodMoYSUHqy4QiT
rLY3f1kB0pqnHO7io7fxY6kYr0iCkDW8E6YhTYYFXgUFBuaJC8DrUtE5FkQJVnDpkf8W9mAWlbqD
pNxxRKmrAky5LFuwYjOWaEXAeAsQVhvqjt5hpuCCZD4UrQLfYp4QVZmMhh5EboUf2Tog+8fTyCjg
X33Eki7BZO4oqQEs4/uWL576zjlsE28gb4gB3yDp0U1IYVpJfgBpfxoWJgEzgBLNCVI/nU4jX46h
c10cclBNUKw7vCuhFkfHgGx8bIJdzEjTpwfIwo+8oFLj1yBgDB8FMDAGfmdOAuyIgtAF+bk+GVzP
w++ymgg943Mz22t6gdpkqOTcTmbzHeDKyc1+XP78wkc+hBwkflzi/fKuvKU18h4KVaTj5jphfe0V
cAfS/tAFIM8xwG9+gmDnsBPxX64+iPNLxPC0ax20+Wl9t6zl91efgl2mP4qfngPICja569Sju+38
yWTXHknxeWZgPERZB4M+t5CHSkjHPdPxcPbihGgPth6WX39D2LFOQLf6NFyjswXRtxoxQ3YzJdFZ
w3DnPw1izraYrNi7VnBbH/yrz+OmB9Kl8Sx0SNPVo7UXfaHMPs7Bah/4Aq9VxkPy9RWUHvfPX/3f
vg0BtF9eAz/+BQ8DLYKaOa5DyxdFBbIgZ5CTEDXZ5bJsSNFyDomGbymlQvqSYHF7J8RjTx7lKxt2
ILi9IuISOiRzMvcutHMa//gzoFpea/B6BQ/MSflE10MehcDOlzjIztvE8d1wNUllPjWW2ObjTd7F
4CBxJhOTqxqD9bWms/zrp+jruUv+eOv72HjBr/6sKL648ARChNzkm3tUZiwLDnm3TbRUXEJfK29D
dtZugSCVSTIloT7+zivx2+eRzkd0HUGn9zryWutUUDP7lMD2dzg4bf2HNcmlGvIq0sjxxKTJLGEv
AzYRlD/+si89R4Hvu2YRpXGiYUW2O0qWN0XEDay6GTmfEwA+1To5xId2IDmz56F9/jZIu3xYMH8I
ZmA8UbLxvsb7PHLpAjV6qoJ9dA/o+uYuJZC6OsBFelSHcesnwM/DbsgxyF7FOl8FF37bq0icvkaU
Lh13h8sg7ghypC+lXBYyULjZCTls/SDMuAcMWvxw8XzDszd+pmsJf/p0pLmQ4ODt83A59Wdy86pa
H8v9uQSWNNnEfq5A/+BnVUu//Gqxz6ZZJ+5jwflDUSDPOk5m+BJbGDTJhRyc49dbfvlp4+dIcbMm
mUL1ZUH4OqTEqK9eQulw7GG0nELMuk01TKncbvqjJnjP3ZqCsIrDAzwEDjJ3jQRWVt0xPx7068fq
qzscLyB01H6r7/GwTqpvgQj7FXEl+z2s5v48wp0jT8G8I/FAfn6tiq4lOpxrS+fcx86Hr2D7xkA+
njx6sB4rYB/PZ/DFlw8dFUFR4NYfRaZwZXRSPHYjVD6XI/F7xQLtyeksGLhljW4Tm9GVCFIILsbX
xfug9xpc+rILPHB5oqNX1d56IXseDobEEX+n7xM8dNodxAc1QwcUPYu/fvJPn5XGWRos03MI1/cs
E/vnN9GjvEPPPFZo67fRpbhvevFeWQzPbKvPR4lfIfkGyubfombe9BZwWLGJf2Zbb3q9LiW4aBYl
gW3MlJh+qcHtfBGNx9dfvmphff6+g6VlB7Bw52aUR3mhSBPWyBvF8dCDjY9jLFg7+utvwWqnW5he
jUsxbff51y9GZ6qpw7L5I9ALuUu89PhsMJ8rK6z9OMdNz/H6nJTHGFb3cESG+7z/8m8LhLyDwQ5P
54EeXyGGHsifm78uE2JNEffz61gaS7XgPd8LwZbnsLTxVQ4YYIU/PqZOYles1zc2gOqWFUHS69Vg
fhZtuPFPcth7+2auVbmDRTxqJLNerb7lmRZu/UDMs099wM/Pmsv/HxMF/H8/UdAHLiaHXW96fPlg
XSDT9kDuRLQBfeHCgJ3mGcSHpQf2xdlxocyiPXEjdt/QNDjNUH63dvDyvBmMxdFh4KmTVDy/zy2l
OVOOgCdvL1iy6Dqs+tfOoXItO2TevIlODvhaoLWzO7G9/gmmTz2PUE8ijdh1nRfkzcQ8BKC7IAPh
UcdHe+IhwoKE+7YWwfziEgaKj3ZFh7Z/F+RxTyDI10YhVmM+msXyvhUY77aFnyTK9CE4exoITlaI
jnl5KOidKS2wvR+SRV5XEIcIKZxvS4jsrzkUaykMNUg5ogbXyVQ9iu/RDI+LlSKnqCMwovQcw5fm
BMQovX1DFrNdQaWcDWRW3rFZHl8Tw4dwslAQiNMwTh6OJeq9JryoZ6XhryzbwmMGIvyeequg973S
y65szcQzWAJW+5nYgCDYBpJS+x4O+qmHspizRPlycTEHp/kuVXHtINPwomRhJMeAaGeoqADsG9D9
qZHgsiw6MgLsAXLDaQrtcxwh12EvYImGaobatYwDKIsiXa/9aElKkxTEebP3gtwOygrtr8hisTVr
b10vVQi8mzFg8VSvzTh5XQiq9qygw9BbgL6YxAXndOzRWet9uubPSyYLx9XES8t9vAlKzgWo6v1B
jMQTh+8gfDI4vbYJDFKeKdkHlxJm1hOTI1c2+nwxTgwI+okhxs5LvYEp+Qu8xg0KpL42Kf/pn618
+9YtMq7YLcjtXsbw6XoUeSXre+tluWDQ1S5L/LxcimVcHiGwn6aFdDfqPVoHRQe7AwsD4LCYTkM9
X2Dun5iAL/u4mc41qKVpzyzBeGPrYpGXdIbr8F6DaSzbAot7K5b4z5rg5cZ9G0pPYw3AsbgGSxed
9VEs2hJev42P3Ad7GmYk6yN82hlEh2PvJVQ8NR08CVgg/iqCYq6HN4Sne7NDiM9Gb3WWXICfu90S
Z6oxXb0lb6G8uzBYDsW9R+RTzcALHAty9kwxGTtZCeV9NPso2kcpoLd7GsI0e8rINL1oWF6uAaF+
uztESzgt4Tuy6+Eeva1gfUR4WEW0YhblEkOMHr+HdXzAHtZzNgRlLcp0Nm5mCb6MfUKHQz+AVV8S
HlyEMSdaGx3p2hM5A1vHOmCHbBpmUmANsAV6I//FPj1qHowKBBrw0OHbd83wvecXAHZFjPmdWQ5T
vkoQ+F9wDpitQ0gt/FhhJ7kwGL8lBpM3fDA8nOMi4HWv1ydV4zn4qe0nCnfRvcCZ0N6hoZYqKiD7
1md01Dl52sOFBFp2G2b/NM8wmYlLjp2YgBUSyYc1zD4IXbeB4OTSMgBJkkhUyh2KlqZXBhpDuMO8
5b0p1c6GBBJJipC9Nz/6chi+GRzeskkO2OT0EbaXEsB3Fwe7bb3fHpk1OefOezwM7DdZHyzzheVa
j1j41ld9faNdLQG2vaLDYiZ0KnMrhsgxDkSdOFtfz5cxBV3mKMhT6tqbJ6+Lwe6z3jBcymOyJF7f
g2L7zqz7ZtNivT8YDlxSfCcux67FOrHwLn5z94r0OLLAyhBRgOr1XiL71CveIkiuBgfLTgLxaHb6
73wA6xy/kBvUX53WL2LBD+M+iCl4HzqITKjI8htJgSjX4995g7YXx0QbI7+ZTFCPsvOxmL/6vVpR
cZEKt5KD3cULwFLnxxQ++AqRuyKihp7xLZaOkXFFyTF6A1q97RgME5Vx+sZ9sgqsJP30BTlafUrW
7+VTQy2J/GB/NfcDJafJBmeraf/q02Ks/AWiXGCI2XiTPrsn0RCLEmtBi7EFqPpYKlitDk+OF3EH
6OngapL9Mg9Y/NU7YTdgsDZQJ0ElusN+m5AAAmoh2fQgWbKVtrDiKxNZn34uxuNOaOEtqL9IvXHf
Yf4OGIODap6Ido4QWK6SNcJxWiiyDv2Ozq9JqWWavAcs1LVUDOVbkWRrH1fI5L1vMR9e4h0Mdzsk
d10k+gK/aiZfK5wQl6nrhr5NnAKgtxXSABYa/KsHolOMARxF6OFH39hwv+/YgB7xbljN3Nag8ry3
SKNYpJQGV0NakjeL/LRcPXo4+D7UxPsRP/dRSueQOxtAZ0MQyLMYe2uhXnwAH12KtBTf9XHhYktq
Xe+EUCsqzT48u1hgWdQgL2WPRXuR3RI+y1QgV8N862vTf+u//TNST6ALJ2k9JIhpt/UhYBnqOYf6
ELPB736thqS48MU7JtJfkaGTrZ7Cl52mKFBENFCbFS5wt6wF8q2Sglk2whRaV7NER1fcN6sbxTPU
xPJIVDZKmuUj+T40DqGIAlbskvWoxjm4lmNGgr34/p2/EOz3LYvSwdsBHC1RD595rSJnO9/L3nVd
6Z7Vd6QbUU+HmLlBuNvNZSCpbO4R9+2NUpXVLhZoLXh49wA51B+RgpyFLZvZ2wkSZE4XEXmPUkro
82Db0DetFimXc9fQ8/3kQwfFTmAtnlqMz5tqQPNlvoLqfH4nZLsPUPoUN0xdfAJLWvQ5jHpSBUPN
esWClzsEyTgdEWLpBUxh8dFg3EmPv/WeOPVug3ScdKJnmBuWKD9w0DMNTBSJIxRLZ8uF+QV75HAx
z8XaCHUH3tilyD2zPMB237WwgpmM+9V0vRHt5vB33vAe9G2Ct3oGVgAVkmzvj9xfbwzfrPwl1sMz
CvrEBYZfzS2DdcXX4ff6sH+zDdHE6FvQKy6h5K7ggwXWPACM7Z6H6V06Bsu2f9RgFwWmneQRW+tr
MOuv1YDeYvTEb9jnQC/BzZYCLBpEIedmwEf7xcnS53pDiNCiwKSvevmA4ltAJxwOi1o0gdw9WBHv
p75LRoGLXHhWxpGYjPfxKC1ZKH1ytwnm8Pymi+w6AexyRw122/1cd4im8mOtAlL+zt+2X0ClUYQs
4j0pzd4qByN/6tDmXzxaBmUFMWU6dPBMsVgSr+rhozo7CIHM0/HpMvZwkLZnqKxl08xy0XDw1Akq
skHN03VBFIKrMIab3np0ebvGV9r8GlGVc5UsbX7UoDokScBRL23WD5KDn/6SwMhkfdk9TxDq75gh
h9C8DPO5vVtiykh2IIhmP3x0MCiAXOkV81HPeeOTSzvIN+8jCTJx/NNfcLKeAk447waWLhZjOHR2
QIza48G3YRkNbJ8XB534oVM09CtsMyclSnZ+65SWe0aUj4WJ9O3nZ+MkKSDvGhWZZ1yBj6TeAkhe
9BJAgzUBB9vwDl9hFgcwL6NiEZdTDr2X8SFew3rNun9bFdSeZUjssb40q93jDuhq6aHAEjEYGdD0
8FiDMNjx/cVbTI33gf08WIF0rfth/u13nJI8WDOu1pf5q/swZyoGWR+vbhYoqTn86RvNo1dDZcjX
cPXeeywSVtYJLVkGeCt44D3tzYbe93YPq6D2yTEu7WERc1UAnmMRoq7cQeftHrc/f4WZSnSbsU+T
CmrmPSMurk2P3s42BxXx/sTPPuKbNVKvK9TU8kTyiD0Pe1jyGPo764Fhwhr6LteoBZxVpFh619bA
+Tffh9iDE7GHWiyo+jYYOcwFjlwsMyxmw1wgLMYT+dPDtbXrXC7H8wu5CxsP+LAUAUhtcsA88VTA
zeDFQy5avxiuYpGs5ygU5M0fI4PH5kDds/4F2+sjt2Qzb+KizIepJW3PQOmzZmSLpobfhE1+foPu
o71bQfNmvjGs2FqfozSDf/kgWb17QZ2DLoBvbZ+Jvy/HZjJqJgOc92qIPuO5WM9qyEE4XV2iWNy5
GCEXVnITOzeELNGga3f5ujBL8Yr8VHwAqj8WX/51TH75E4f9K4MlX03EBSVbYMO1QzCwsoaMDz6A
hXVtAY4eqwYDx/bFKiPJAD8/lir4CGY5DXN4qsZtws5zCjoGuQaDyELE5szPQKsXyeErc9wAvlhV
n2/tyYWpP9m/+j+MlZGO0HodimD/MDMwX29uCo9YDIhWcUqyd8icyiaKlwC2olyMuM37v/smPthH
Mww4d6X3m50QOmUz7fu0qOG1xBlyDmY3TI10dGHdpiMpM1anu3XJUtjA7BHwSp8Vy7UGAfjtz6Ez
T8l6eexXeDwaZXAh5reYqzRdoUHjzRyYSrGkQ3WXt3qOMt5Timnvai4s/dOXuH39ol9f6BS4AMbd
7usLkC3/y13gaZjj8auh42uqQN1mI1KCc1/MpmzGMLaEFtl5DZq1fF40WLmO/Ke/JN+rIdj8I9LW
yANkYOIAPtqz+6dXE1RTAb7SLAn2Ut9uefDGQFC0N6LyETeQ69m5w3VZRSzu6mPzy8/wwjQx5nmv
KrDASoL4LDMh2J2xQse7cVMAOlkWMc+9XJCn+Q5hagkh2TpCzVYvAqgliY/3a28Wf/ePPRwHZPbe
WMyMN8xAOhbNdp+O+vyelABKTlETLcdyMh5fQgUv9+ZMDr2Z0jUUphzIj84NgiYTAN3ymkxv64rc
T23pvVwMHNz8PFKVs1LshXsYAOdmsOTwNPlkAcvJgHEuVSSIs8KjLn64UoXrA7K3DtYqsVIHFwRD
orRcsvmltoZJT/yAlbPvQObXKAA/EwukeVzTUBsJFRw6N/j5x2Fhc4WR78b5GuxvfQ+maRVcmKbE
Is7LrIs54M6Xn78l2j5ywXq6jF/greIj4EOv8/7qi/ZObFzlXEqXebn3QHuVUUBXj0nG580x/uqr
P4pQX4Z1vstJSkLi5+JDp8bZ6KSffwnMUgH8QU0y2b1ZO2I8saPz9wfDA12+G0i5clxDk7OWAyIv
J+LytQ7GZrI58MsPKBabZmy4MoR8tGZElTiTLk/pWALnYzDIS1jstXMax9LhHBbEJ+VEBzM4Q/jt
7AumMFK8pfv6K9hFc4XZB73RlT8HMzC9eA72H3OnL2cJKUCV7xeifM5GQs2HIIDxRHksbzxpcYav
JkSd8CE/v7rVO+Z3H/HiRYVHzccsgfbrhQG70BzMjux/QYdtGYUfbtWX3LVqeAuqL94f+oHSfO/E
4HR/7ogvlX7S12l5B0zSaXin4tZbUAwx0HcHjljIs8DuIxmBdF/rS7DGUQhWX8CaFGiih5o06ooZ
p3kHr+2YolIp04buIDtL96Cq0GnyvGTjGyu4Kec6mB9cAmamZkPgvgxKvI2PkENw7iFaLAXLjch5
tMDlF7p6qBJjxlZC7bevQPl51XCtRPHmF5YYHnfGCV3OJtZXru8VKaufPbI/pqdzxnSsgPq6F+h4
K9/eGqnRCnen9YlpEr29tX4wPvjlt9JkLZ2wkPHhxhOCjZ8NA2eOd1COp1fAROJUrOfoIklb/giE
yMSAHsjcQ1QLEDmrWel/fpycmRq/PC+kVEVLKe+WuUDoLVb6+GhLDm5+JTgdcJMM/tvLpYMXl0Ed
RXNDmZLJ4ZC7KHiZ/aOgD/PdCpu/JMFHdIYlKJ4phNHVR35UrslL1Rge7j9XQPQOxx4+qxceilHx
3fhLveVJ0MIVMRbyDdakWEarBUfLdZDBYmOgC3ON4S9f/Pn3opYE+MBVhA5GPxZre6nvMKqlnhya
vvdWI0pGaeM7mF+8Z7KcvD6FNfZeeKd7sc6pLymHgrMayPFqrphOoApgxjQdCoyyaqZjvD2AcIhZ
LCci34zd0b5Ahj1OWKrZXYGRGltQiAqOoEs2N+vQf2IQMUKHwojbATwSDkMJtDXRSDTqK2SlGD6/
Hg7w5s/msc0hPF2wHHC1l4H50aY8fD9YQrSQq7cnEa0Ygkd7J8GU7b1mDqILeNopROhDS6/dGVEH
TRKOuC29/UDGe26Bz4G9B5/RVCjxiKCBjWcgWzT7hh72vgEveZPh1sb+MO+MqJWDeYLET9jW2/hK
BkHTFqTc/MN0WUEMuf3rRhQ5uuk/fw26MbOICjjL4wFaL5DK6xSIen0a9i4SfPjJ7QZFMTd6f/n/
1D0pceY6GMD57Mw/foaUPTd7s20u6a+DGMxfbk2WT3Re4fKiRrA3ej+hADI8yOF4IIFeqsWu+AaZ
4CwWxJueJysVKgM2Xycn6saPV/cZc9BxDjo6wF7/F1/klzUKeNSnzcwaF+X3ZyyUNfDGfRqlorMY
kPgdqxbcPr1mf3luOornYuX6SoHLazGwkJsTGL2jfwe2efCDlYuGZB7TWID7ZT6gaI52Ccb7A//z
5z8eSH/1AsqH7oiOmihQzPW9BpE9iSjQyqc3m8fjRdyeyBYIRs3QXz4CFolr/L3X72aRJAfD/bJ1
EPcsAMMlOLkwG0cS8DsTDtgVcAZPlmBhJhCPw6IOTQgCCejEb0U5wanQzvBajQkxztilnHc07hAe
rwgLe9PRiRk8GNCxLBcIfn1r5m9bxJLThBYpvLKk/PjgvlDzkmBb36pZJ+GjwI5LDXKQ+tYb5+E1
Q/QxNBLJ3KvB2/oDcSlem99/e6sh2S6UDt2A0C4bKA6EFxafqzOi7Tx5czmpMwgwMIJ+63esjloo
kD/NZ3SRa774OJrcShsPQF5UwmSGXmtA5XR/kaAXnWJ+cKUAafIakM5FzwITFtrgt7+ib77ApNVM
/8vbxPPZoOHJGWFQCqeWOIVpeD/+BBkWTQS52Vrw/DlYIXd+1cF65xS6q/LjFwy1fUQq5F4FHcxp
hFeIIyxZtZfs+OgmgcSS8t83OAqq730Md6f5iSMc7ejYcGkMF3NxtvoQDnPAPS5wEmmPpX3detv+
pX+8pNv6M3M1qS5cAHSJlkZhQoVyn0JVvJ+JTiPNm8TllsPz/flEZoTVgY+FyZB+PE6nUe3hIrrE
0F6BvOVnfdjj3RSC0ZNVZLy8bKA2Pt/h+lkBZi2xBStzON5FgXR7pN4jIVm/RNZgbWcrCTrRAevt
MuQQ75k3sUXTbvjweZWgfjyAYJG4F53dye8gM114pGpcsPGdWQBODATMulm8PWOTvQP9HTLB4NSq
t8+ZFMObW3+weDObYT6m5xb2jP1BvsZ2xbSq9xJu54EYGXab8uW9a0goLDeeyyX0drBX6LpgxrvM
I8XceIQDjZG9ibXxsuUIniXU5dJAh1Pvbjyh7eF8hheSnryrN4UrrGCHXRmvm9+jKNieoZoLDBZK
cyrGSPbyv7yweBHwelU+Cr88TU6y1wPudVNKmHF4wpvf04d6r2z3mYiYqbNLMz+5sgNnBY9EK7in
1/fDW4M/vu/J7LtYXq7PwI1vkh9/3lk1o0DzHJKAPdOHvu73QSfGnfAI1hFLRZvcvBCKTUuIduKe
YOMpPCzS00qMxjvreL1UMcSIwcTY4xelXvDQfnw+2NumSJ+H4ZvC15iGxJJ6rK81YlzwjL1l42c7
Ot016Q6juzQQ712Kev+8ORZkDq2OnKROdMw+Fg4wj05B2orFZl7bXPv1F4PPrV6S5QQqH67RypBD
2fcDPeNTDBNLyFE0cP1Aaqa4w4ibHgGbirq+8QZbns4Mj1cp+g7DZa92wNFDD5mPHnqjexItwHit
EXAI+96uWiUNLgVEmNl45Qy5SwWdfawhdYlOwxiaswUbO+sJAtng/fwUfPnpCel+dBiId9A7+PhW
IdLHSGtW82v/q354n/LSkF0QzvDGVw3RrhEp1v3eamFWjQv+OuyF0u5eKECfTB7pQ6QXtHq981++
R27KnpOfXwQonPb4c6ujYrRPYg62PIlUnxtpd1CLDJInPRP1yE06Lth9CFouu6AjzJhkZLiLD+Gp
2J7pKarF58fHNx6EudbLimWXa7V856sryufaaPY/XrrtP7Js71BQfjcq0oexH1imZUNJ/Hbv4LHW
AVGZiBZkYHIfOrIlEU3GF28WvBH/9JVYjz72xvAk2DDNGhl5W95fdrlbyQfzkCEk0mvTxpOewrZM
c1xL0bdZplWwYRt7SbA3zdzbeCsDb8I5DxhbDBJaBYUAF5mqmOnFT0H8s55Bfv92cHvGXzq2RwXD
W1y9ibrx9TUT2hIqTVQgTePaZnX7Lv7jSzuh3zf4oBYp+PWD97feBpxtiukvH2JglvKwMF9Vk0W9
5RDysnig8Vu7w8IYTaJr0afApdDUYP8pAAY7tm+W0g0C+OsnFBs/49Xc7uHGN/B8PVtgJecD/t/P
KPi3f//3//n7LQhdf7u/tsGA6b5M//w/owL/zG/5PzmO/yfh/35bAh7z6v6P//jXEMI/PkPffab/
NfXt/T3+4z/+ff83bfCPqZ/y1//11/+2/V//+W//BQAA//8DAOaLvFiFYQAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693d43ffd48b7-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:58 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '264'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '57'
x-ratelimit-reset-requests:
- 2.38s
x-request-id:
- 607b159345ccf7869258f064154e9a57
status:
code: 200
message: OK
- request:
body: '{"input": [[8134]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '48'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R6XQ+ySrPl/fsrdvat80ZEpMt9h4CIgN0Ifk4mE0BEQOTL7oY+Of99gs/JmZkb
E5DY0lW1aq1V/R//+uuvv+u4SJPv3//89fc7779//4/p3iP6Rn//89f//Ndff/3113/8Pv+/J9Mq
Th+P/JP9Hv99mX8e6fD3P39J/33n/z70z19/b4tRxarabbpl4Cwc9eakb2bxoUZCPhQJuP6HMz3Y
LlxeWYsSVRBt2SZerI1BDsBDnnFdUd50DzSYa8BQwCzGS9FaxVIa3qX63Uc98RZa547P+/yCtMSU
CPY6A/Fe2aZwOY0527z1j9E8r+kMEXctsz1HsUubwylRXw+aEydKpHhaD8Prq4ZULpIsHlassUB8
b5wYuD6iEb8uJzST85xt5PXK6PnhWoIdeiUxlsUmHg68DcDV4jldobEoyt2r8FB04Bv2XHQmYq7k
KSgPNybZ6wPqGPrudDjNA4Ir4yDcrtttErRWoxMx20slejcwLcTq+s0cM62M8X5uczSnmxUx3rsd
4tEez9T8muzJjn2ckO9gBei52ejMQccuHOPLvQTDnlk061ZZ3F+J2kPTiCMdCQvRsKdnC861tMXi
eeUhO+tcQuEia5jeHit32GubBHRn7hLDOx8MioVTQ9HeDHLpPrErTH0LgKrVjniXuRYynR4BRff8
S8z5dhvLXr2y4VA9SqZ/onUodmf/BsvLzWfR/ntG4tDdM1Sdo5pZwjx0/Hp/OOhVUo2qlrsxZG1G
bis4KTo5vmsfiax8VbC1NUyucNkb46sP6FowcWXWvW+M+mr5PhwfZoLrw/ZT0BgTCpIZYUKCzCvG
oOgySOZlwDbmwTdGbUYi9algn3mjl3a9nNs2Gp3jlhmVpAvJ2aklJOz2IlG5OIqRiBWFd5BQYhoU
XDHT7hlKNp8b04NuhsR70Hwox2BNDnmpddxntQ7zPJnj3BSNwcMx7X/rE++BurDyDm0EoIUeLR9t
2Y1HKeMgSvygTCpF0bd7Z0ThvvLIQR6XhTj4+ghWHjKqzIklRnXcJDC/9CFx5qddN24DG2CRhDvi
FtumGPb7TgGFzLYUPc5j3K9KWYKI5y7RKynsxpt71+AaHq9E559dOOjN3YNCcBvPGErd8a04p5X1
ZBdmr/NO9OalrWG6xitmvWJ+oBsFzKX0IM5U34wHKxOJet5ReV+cQn482yfAZesTQqXEpRcWOnPW
GR4zUx+HvOqqEfpvqxHXroQQwZJ70LHnidYAuSteyiNHQV4y2jcZhAMDF9AMHTkFKdrE4yuiERzk
7oz9Y+R0wyFdz6A5yBLRyxdF9Y7ICmzbqsLztHq7dRu8PVicnzGV733jtvUHHFid0xsWn8gryur2
Utdnvu+Ju7sWYoyRPsK2Xx9IfJkfDYEWNxWOm2VHzHPpGUM1F8naHLSBmUt974qPIAoU/djSlqM2
Zvq+5kiVnBnZX1Q/HOtVncCRPA1m6nldMCmtKdrP8xyvLier4Cu5s9FWPgds0x4vYnzmewz5+d6R
3dKLwzHZni7oY7AeL4pkcKd8zqGdb0d6PmjXQtzGvFrfnOSNf/vz3d5dDVW67ONZfW+K7z728Vom
hk+lKmwL8XI2ypoOzyuxaWbHvBiDHH54YsdpKXprzBJI/SZj9mG7K+jTUhOY8IiG3GIuvxKVImrY
ISFRUaNxK482MEW6kDPe2Whki70KRX1+M7vkR4OvtG0LhfK6kH2vpKJJVsd03cnJyLbyy0fDIx04
LHRk0LEuXWNcfmwFpnhg5X1RxfAd1AQuuuew+3oTdpyrQYsk84apMBW1o+HelX7X7HrKW8Fwb5eg
mN8TZlP8x/N7X0PQRDH74Ss764qMjlX6onl7tAzxeuARRfTRM5KEWcyTtznCycsshp/fj/vbj/Uz
Gb7MOTp1KFoCMsqQ7ZDDt9iJsuoqDtpykbGds//GgjsfD10H64VHqS06IVb2DU39hO3jQo4Hqzjl
qryJFboKjm04qpeRgq3iDV4vqtJoPCYw2t3TNbHnxEJSu7xEQIS7ZeasXKOPe5Nt1DceIju20Qr5
dkIpFEV1Jc5Yv8OmXtoWrItoiVX6boxffgA6nRh7GmljjMnVbsEo1YJ+Xvhr/ImfauMXXgKMaHjU
iYeC5haTDdlHot7nkQ9K3A+0ksJHJ3gwWCpVm5a4j/MYslujOYCyXUzsl2S5i1Cam2g1kxMs4Xrj
jrPFx0ONmx7IYbmyBW9mKw9JDx4w93XDBb9KhQLpfSGIt6gkIR7Hp4PsEJfkYJ1FTK0kSOBQZzo7
kjYPe+f40AGWSUQC/vmE3Ct4hOLW1Fi4kKuYYnxPIZ7rc+I+9UMollDZELnfAq+OXdYNB3ewgL2k
FdmuHzEaNSI4iufanFhjagih0zugwt5LVMGjXiyicPDgJmkxlWVN6Zpzb/Qgdas3sexrJrjh3R2U
a2lP+yPZG4O8fEfodVFkElrvc9c3ka2jvpJOJGk3hpBTyFSIgu8Gr0quxU3vRR641zih6aVYdfWG
hz6yr+uRLvhw71o26y/Q7qoYS5v4GoputsyhPqo3ejTKRgxih2qIt0+HbPF3LIRUGzbUsdXhRZfv
uzGINibEyiHE6+XKRkOktBFkx/I89edH/FboqK9P68OARdBhg4eHb4Ye39WFOMwdURfdHEV13ZZT
6f3VBG/smKL7t/KZtckUdzzvVQWGs3PGUrjk6CtTHZBHeczuu6Bw2YSPaJnbQCzjIIw6dRMbNl5y
IS5t1Y7t1E0JlS75xLMrw+Ccc4w0CN4Mp5rnDvsQX8ATLGZ6kgYdP2WaClQJDWI5+5lRSaGcorpM
OfOoqblc7toSKafVltgfYyGmfqXCKvFNvN5YRUf7tYVRtfukVDl9kpi7dlPDYWUADircIFFvuwv6
2PbAdsN1IwQp33x9zI2EuA+UGN/LfF6DXGmUOGyAjs7y/PLrt8wruryj1sagsHyWBTHvnzoehyj3
UB4aJrNdtBI8kQcLHl3OsDo7yLFYRysPJv7zw9uOrz+mDtL9eiDk6WExLlzDUqf3o+IT9d1vf9ej
kBGeXc2XO0C9uKBZt51jJfuexLjniwSG9FQzXXMKY1Se1EJ1bu3xMke1MaoXtVdHtf0Qi8afYpzb
Tr0iy8phe8sdxIRXEZQPx2MbzRGC3/2GAxH7Lfv1P97Oax8eN7gyrAdWzDbL7UVtRaYQ4otj8Yd/
3xTR4A/3/W6Y4XMLdW7u2dPj55BLlvOnn1F2vKN46n/O7/fozOsKJE6rpYTyxSfBneo08TjKmQYW
Qzs6Pyytgs+Hcwbm1jrhBf4G3bh9HySY+C8xcf0y6GneXGA2bh94tsVDzNePVwX4srCIZ29RV788
NYBbRY50ceEUFdk+koAk+w8xgq0ZjndDxmBFYLP96eN2U7xM0ALlhWcZLF2mkH2F3H2wxyI8LpEQ
K+0GYj63Kb2aG4OfMluBeaWY5LDYJgXPOETIxyvOHGVmFQvn3VD0w+tNNxtEd5AQoOx71oh3fTsG
d2a+uf71V8/U57FoXy8HPuvwxcjNNw15z9cJLPz+wOz+YBSj66ETKEGeMptZo8tIbJyAbRr7D98Y
zr1BV+LhzdkOfXUkRbKuQxDcZkwzyqgYqRTJ8GoemGkLt++Gg+r16P3eWHixT3M0WAtb/vERlqg8
D7vIulQoXK78ib9UxbiNuwj016whu1PuoFFFhYJ+9bCtVkXH/dMxgI0qIqqo23vIj/XBQ4rJToSo
6qn4BlspQgcrFPi7shXRrD5XD6KrY7Gd2M/dFo08X5+U9FdPdihXn4MJibGe08+0Hr2dRArK3r6T
h5ITdwitLkXqd58xY73SO1Ge9ak/lldm673jjpeTd4NpPboijwf6Nuzrqx8MD+K6UWbwu31VUb4l
KiHf2u4GY721USZ/txSYL7r+IkBGRIuA/fCg84+1gpa3cYlXXsnCP3x4XG8wM2sjN77jzitRJl1S
YtpKg5g68wK4DuaLrul+6Liv9zPItweV4YIX8fD2+bie+AWF69txhakUKUTpEWGVDclPrzhQiNEm
G38VhL96AdhZClUmfBERzpL1T/+tmdx3Y2oZt5++xmtTxx1ltiUBBWoTHG5K8bXs7fjbD4yOfBPy
FzqocL7VJ/ZUPkxwqUUZrFuvINuL83Y5VsIb4FP6ZPsZpQVfxUmEbmuPss3n7KJxrzcyaq/cYwcE
W0Me9/0MmJ1KxGuyJOSfmeNAKJw/ejXuzl4YAOpOHiEUj/GoHnx//bqoMh41xzDG+Aka8gW90cUm
tjqpfD0C5OGyJc7Hlgv+2w+jVAqmlQl2v51b2GAEFxerZ4HjMX1FDirmZ515j/OrGz8nDcPyuHYx
1zrP4NLrbsGQXmra+Y3vCpNtdHj75o6Z728m6KmMSmDIW//0ZPe9b86SqgXqixiP9hwORecn8MN3
Ih9xwY9py2H3UHQWWFlp8E//kGFWgEOHukSIf+7+DBqzfjHD7Sv0w3/VPAfbKV/zrpatVQSLu5pR
+QpDwavcPIG9l55Tv70ZAkWOjezz22U//i5X/JPDtN9kI2Iz5trmVqF2V8aUh7ttN0raqkRk/yYT
X46K8fLmPZyficZucVqiEV1fI4r2FyD23dXcRb5VMHyvxZztd0FhMPel6UiXVzVGyoPG7Y/f1zdq
0uWw7opvk9QRpHxxJPaoP9x+9+owrCJSYZpdvjG/+68RfvxMU6Mk7I7vREJhMDtiubd1tFRyK0Vq
MT8Q/ZAwd0i8NILJP6Kq8ngaYzNuaxirzfCLd/fdh/gE/aUu2KQ/xDBDNwq3tr38qTfelvfsx9+J
d1yMiL3C/gLa+WgzO4+YEIvrQUGy1zbUCR8HYyjupQNWs4vZfn5S4vHu2SZ8tqNDPPlrGX0fJj4s
IFWY0yvY6IHNb+jM3Z6um6zrxKd5pxB8zmu2ey/D/9IbVYJPePnCB1eQuZQBvpMv05L7IARftgG6
LpaM2RMeCho4Ggzhdsm8AExXvML+pNIderHdFTLErzPrBCdmpczZ7zx33AbaDMDsj4SY35U7rrKz
g35+Qrv/LtBPH8H48gtyqhsXjYt0N4OPU9ym39MEv0qdinZBc2QbT5bdIRMJV6XHGNAZ3WfoW8lH
DSL95TP3qX/jcf/g1U8/T/xzGbfKk5rQ3zcOyUV2/i9/zFczk6RJeDS4BY6Kbqq0I5EbcdEFm4ii
cF96VC47Hncnfr7Bjy9nu83B6KNI+DBDIaeLIdi4i+LeO6DLqGZa673jMfhuAVp829HhqdzjMTbf
Aaw8MyQ3cutD9rg3OiTE4+zHB8dhHt6gMG4V22n3izumUKtwPTczurwsSDe8i0WNnm1s0R9fZWmh
Zr/8oYMny0ZTlSWFoBt0ulp/HrE4f1odHUprTX7x4WW7pHA/YY+OoVeFw/T8+tfvzUlf80RemdBo
JMF/6qOOVyeIW0uj2e5zQd9FzKrVKglMooeeFcrwQgG6NN8X2c7Krzt01aDCV/PuzPCQjOh8ltlo
8isZZmjmUokdMIz94kF2xiEPOX8aKtBtrjLC0DcU377pf3yK7Kb1x6efqOhilgPbD0ne8eNZu0Ab
2YK5bqS50/o+sIt5IBN/LcS6DNs//I9c90H3i+dPTzCnyj00bqz7CU5ebtFZkK3D8aPHKppn1o1o
srLrZLJOHNhp1opovpSJsR4u1Q/PsOpIO7c3BucE587r2aHgJ7c8maODJr9o4pNVyNLAwmDuEkR+
+kFM+gNFozri+MhfoSjdTEfPISqJpxIV9f3bLqHwyhVzL/dPPO7PFQUpu3S/ejF6CG8W4ndt99OP
MXs5GxWtokNFdi881X93+8MP8LjrlwUrV6hVmXQ/MuIfdmLQsZPCwekV4q2MT5z/8lF+vRu8/JTU
7R8bp4ZbIbcMy2OFhv5Tz+A4kgOdJ6EW/vGX8f3wnd5X+vE7C5qrt2LWp5yhQTMUUH/43Lwvjitt
3NZCqbopiaM85m45oj0F01W1P/1NmfzS1da5LYjh3/bxMG/jBHh2pvTNXSaE+JxMdKF2xfCluBfD
81lLwJxljOWy82M5fko6ynf+DcvYU+NmFzUOxFDfiOW074L98uf21dfEXOqNO6weEl9p+NgyLzt6
Rb/fGRmsRVmTXVYXIf/0Z+mP35ZP/tv0PjMo861HyORn/vw25IIW0HiuZgUv8S1CDS9nbMuHVSFi
ye5Vub6fSZTsSdeb2cFE7BsLLGnEEHytKCc45/qd7DbZLhQ7dVMBMeUN5StsowHUV4ve9HCncnXr
wqlfVyg7Vmc21ZPBreuRInS6MCyNd8PgsOlGiFxWUP7IDIPb/neG4oXcT3qzd/nzoaU/P5s59ksP
2boMaziG6p4Z98/K4MuSjLARazrxlSCsV+VMhgk/CV50i46WX0WG9fbzpeN2nhRSvJ/pEOo8+4P/
LckPN2CbzsaR2r0KOvnL6MzmKnOPZCXYo3BTdFtj+tNv7lD4G6o+hXAJaYenGHtRcJj8RdyyISmm
9SVQVWiJGTgLJCIAEwJfu5JLNTu7DC18BV4f60O2NV2HIi3GHCZ+y4xl8Qr7aN4n0C5WT4w6+y3o
xjqeYDO8d+TXz8TnUpdA5xbDy/ugFkOeP3O0fun+T28bbAhrB6Z8xTN2lmJ5mc51SMHU/9SfFO2t
GTy36e6HVzF9dl0NBXOPzD1Z+c+fz9F3f+vZvdBsxJfR+6JO+UprPObFQC56CeH5orCDhR4ud2Oa
weQHE40u3JDWQ1qhWVRt2WFlK2isPltTFdXHZO7EZ6XHiWRQrpdLzD3/YVBFBRl28bL841ct3+bW
g7V3v2P0QInLf/V3adiLOPtd7w7K49Cjhlcz+omUDjWWfRgha2f3if8t4iFZ3VPQb1VJtvtUF+PF
aWZQPx4BS1QSoSFovxV8wVlM/qEdSixNZPQUg0tVyNA0H7lF6BFfZgT7NPvz/5BCYMu89vMtJn9Z
RfJWWjPXb7gr4t2hRhP+Er1xJNRcNTqiqT7JQXoGiKvvtwLPlycoOgcXg59wUkGMmwf7zXPGMSQR
sG7jUdE4pcvnXnkBspoNzDpoleDFoTlBfK4R2SyGd8H3eeDDhLdsk8xb8Z3mcxCmL5cYpXbpBscJ
Zn/8pfYht12qz+QUFqp1pPn2PoreHFYRcvnwYvvsW7ryorpLsG9X/TQvkMImb5sbcrX7nPzmRcxW
eYv28omwnSE8Q0jGcQYT/8dStTrF9HOyMZr0ODOS9IVGiR082LKzREgGVSgccZbgWetPPGxV1xj8
UbutJ3zFwjAyNEzxQ+uX5jPnY1+67senh93VZdhCXjg47xdddwZtqHyo/IL7p7sP1jfP2H7KTzrv
hYT8+TGg/VlhxlA7Bx3uj9uT+bHzEj/+DbtlsCNkf3ka/LkZKILUOrMdzVaGuGUz/6cPf3zC+MPX
m5l3YW71mcVU65wcMpltiem6tKC57VdgqsRkGM/qYmBgAKzPQ8q8SY+zyY+FJ24jCpa/QTx83iW0
UW6C/PyAscNGvh7i2YY4lvsyRustKYjoQ0Gs9/gqpnhfYJcvdfz5lNgdUI19WPj0MOlDU+RexgLA
X7kgm4rlhuj8TvnNW/BcPtKOmfp2Bk5gIbJ9e3a3IM0ugcmvwpKe28XQJPXtx18nPzFA42w9WKDN
Oo/YaDyFI2qrWo2PB5nt15uw4I/TLkNrTXoyL8y/op/6xZ/9dzhyYiE+iQm3+fv8m2cVkx/XImEP
KnGKaoP+8C/v6Bq0ziOCRJffMKjDeCWu6jSh2B1wBrP1BZODcyMdL8Yog/XgbYgz+XF0z9cpHFGc
4ddmSRELWHVZTfXzZ569GG+KCpM//Ud/dMdYvf36A9Hv+afjm0qR1lP/pT//hJ+a4gTz+Pn6zaOM
0e8vCmRVcaISjFknhodTgXK/OET35Hc83Kmv/OHnRnw6uTytWhXsvfxku1lzEEJfQoTWjjZitahe
QujJt1bPbK0SI/WfxlccLxZc/PODbV/7PuRuYJqw3rUupT7N3OGcNz6aVZcBPxZV6f6pr998WU/d
bzfljww+KB1dTfPq7rGTeliElvTzh4rhnpQl+vGrjT7TDO6vnOSnN5ibjaYYOAgd/v6dCvjPf/31
1//6nTCo6kf6ng4GfNPh++//Pirw7+gR/VuS5H8z+c9JBNpHWfr3P/91COHvpqur5vu/v3WZfvq/
//lr8ee0wd/f+hu9/5/b/5rW+s9//R8AAAD//wMACEOkc+EgAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693db192148b7-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:59 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '128'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '56'
x-ratelimit-reset-requests:
- 3.292s
x-request-id:
- e7a292440e79bd667f0e689db47a9ab6
status:
code: 200
message: OK
- request:
body: '{"input": [[8134]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '48'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1RWS9OyvLac71/x1DvlVImIJH4zBORugoKoZ8RFEVDuCST7z5/yeavOrj3JYGVV
JbW6V3f/+18/P3/atHpk059/fv68y3H68z/fWp5MyZ9/fv73Xz8/Pz///j3/q/PxSR95XjbFb/vv
Zdnkj+XPPz/i/1f+0/TPz58hZADNu3w/bMI+FpQ5O9fUWwctmIlcZRAF1kJNi4rDfEcHERRrcqDm
aO3Cubz7NtCdSiIbj+aA982IoPNEOZJ1Ylbr8HyIlFmQRqynYw/YM8YuGORMxHvT1AcWJ5cS9r5Z
0sPhUoSDtBEkIDfvNVWfIPXGVjN9xfK1F/59f3k0mQuvthAR8BiLgb2ErQYvu2zGlmKfwLJ5xS3w
I6GkLo23fArItYZzFtRYC8f9sDzl5AwnZdao0yZd2DSh7oPHxtdo3qg6IJt8lEGl7Q4Yp0+Q0u88
oGoSjIrNZU572hYy0OAjxGg23pwCErlgXMSG+pfkzXmyKAlQpYuC9QxZKfMg/SiJKroYY9fV+fqQ
2ICfc5Ui0RsqJo/bGt42jysZhOiVUmXsR7hGmxNZkWuULvljbcI4FA0kTcasjzV7RcC8Ri21CvPj
LVW+ZBD4Tw97OT1ysnokI+w6Q8eXE049FllvCJPn28QHwVnx9hZqKrhbCsGoDA7p5tU7NpTAsfqL
52LZRQTdtg7o5WhfUj7unQxEYd9Q1yqOA8vcIwLLBalEAv5el0jhiNtAbzUcPnkwMHlcPjBMIcKB
fHd03r0Z270/zY2ay2cM+ygvAvhWbhX61FEbjvr92UMxL31sLh8/nPMFFFCDWUiNOAn0ZdivYqUy
WUD10/AcxtfDjsD2uLOptzi6LoF90kI/giV+hM+zvrDTVoJ5V0/42J/gsPjNXQSCwW/UGq7CwPR4
jmCzjXfYQEQFbNxcFchWWYGqq97yRT8iEQbyfMbWXRD5+5cvMA4v5FNL9cCMlyrCsjSvZJILXo2v
a0KAvEIe9qi9qZgeaASG5rMju6i3wjm2lwJebRhhp1ksbwadDeF+SS3s2lqvM9HxZPg4lw5Ryg/z
Jv1oitA3Sg9b8y4clsDfqjAo1zE+qCeLc+m49eE+1Tkq4/ThsVBq5i25r2KqHfKe0w3uW1jJ1gVt
q/6VMlLsRTi0ao7tOlG90Vu2PtAFTInsv6OQR7Z8g277CbD5gQ9AzzR0VweS+vRQqChkSveR4K3R
VOzeU855MMwBfBlPjVQdeAH2iHICbpW/Jh//CasFXgEEAT9Nv/zwlsNTSCCh8hnVmeUC/somBaoH
bf3Fe0z7rpRkeB8/Ddr6rB066fn2obV6XsnGsZq0N07QhW9YRmj9vPp6HUl7ZdcmxwE7klXx5W6X
Pbwr2yM+O3VQfecrwE3OB+x9FF9fepMXu6NrMKofsD3w5kAhNMxzTgY/78B0pLIMNqK7wsiVAp1l
1zaDxxXWKI4ubUU6eYtAapclWuWFyZfwpkDQaK+QOkMeh3Mmdy7c5MuAdeOeVuwSHDSwHJsO8alZ
PBah9AMP48TI5bJcQ9YrZb9rWvmD5MDdgb52gQr2a3RGErPbarTzAO3uJo6IpCx9tby8vbxLDXrF
/m6wB/aoygSaoHYxzosPp5NTFFC5dC96SAMzJNxKMngasU3s5EwAm649A0l4O+PDNLVgcaMygKM/
xjjqzo63BMZdgKx71dTX1KBiND30MBJfF4xRlOu9iJdyJw4io/rUnDx+cV8ilG7YIEJUuXwWqT3D
0TouaPM4KNU81G4GL9R26fXLX1ZMTAHf/5JtPgNAvnwHK3w70mt9HDhBk1zDxzLliN42NVhi0alh
X7CMaoR99IknNwUMiotI79dmyC87VILafo1U1Y6Fx8u3IcAXhCY1WN6kJLsW2a6/TYRi89Xqc+dO
Z3AQIwfbTX3mDdlJLUyb05P6QTylbM42BrD4uUJrkFQp95Hsg40UzNTZniTAh1k/K7gDClHuUh8u
3oMxmK8EFe1GrwwHwSklANAHYm9uTCCmtziGEU4NitBuDT57Yt7API4A7z+BWol9OiQwJGWM9/mh
DDuQyS7Mjj1DYB20fLkMZQkPrKU0s4xOX3aN3cOauyXpBWvS+X7RArjFfYlEZWBgeRlZALZ1lOHj
Jkt4N69cHwrGZU+qh5SDRUtKU/nlp9FuWEX0eI5heGsSbBWm6UlH/PTBPijvaKtqKpjFZCMDZSII
OwpyquV8dQpwz+yA4luGQlZpIYRPzRF//biasSwIv/PDzkUVvemXX+Zd1egJn158zPkoQI/dEpxH
fROy6LJHYE3pitqnsvHG2N6W8Hf/TJsfQ97FHwOuyPuFWD8U6QKikwmDjSFjJ59TMOcLL8BliFbY
OnZ6xW9NJ//mBbLbrbRKeqeL/at3ZJ0k23SQLL2GvFg+2FCVouLX/J4AEBBC6u7s6MuqWivg3mcS
Pj+f8TDpQ4sAbewIf/MAXz+kQoLfewTHuzG0yEwCaA14TS7WTgLD866rYOufCOHcLLwetzCBSHYf
SIm212reTM0DrquXR87Q6MNl1Q8FfMvU+YsH25JKhW3htkhKHQdwzzzZMG+2IZKOF2dYPix5wPxu
x9TSVrHXLO1Z2y1sUhDkwpF/+R0A2XjHGG9KNvSP1IsUuvkMZH111Ipp1tAD01RO1AkeGzCHUy/C
c3O+IP7k80CygIlf1qb0chTKdDJfVAQ3VABstuqm6ptnpkJJqK8YgY0y0M1tP0JQwwD/+i/r9kEM
pPHxoeZJ8AZ2FoUY5sozpb7ZnYelDAsBZozr3/mr1RBc1gLYF8JM/Uuoemw8JgFwo+WAnXsn6fNX
3+HdqW20lawKkMh6C0Bqh5Twep+lXARODdvCblFJgg4sx847g30BZ+pZ057PfbSed6p+TbHRZpk+
dRSP8G7JBHuvdOeRxCxj6CBmUo1HZUrfatjD0ySX2J7cBsz3/FyA0Pb0v/mRSeXLhMNFGZFA3tIw
f/0Tuj3ZU9MYrYGfPqIJv36JPXPG+py8l48SSYiSJesHMI7kDHeOKwAkH9NXyl3yjkETrLdo93pF
fEabQwFZMjfUuF5LvrTT4wykmTho9atfxrbPFLBOGux5YlMx6GzHbaJKLkXhk+nMDeQSzp50pN/9
0xfbvc9wxdYG3We99/VrOYDadU6ocV6bw7QVTaSsQ0PEVhudqr/5+zBShsr0FoC5StYfiB/QppcH
vFTsUCpn8PVTUhl3MMzVa0AwjoKUKEJZDcvcWTL4zSNdm3Qpp1lg/OZRsuxrK5xh+h7h6iTEaNeP
oTeTZSfCT37Xvvmr4ON52CawXl1iJDJtBou8f5VQuh0N7MtkDb56huC2qE6EPT9ZmEzXfoYUHz7Y
rCWjmsNH7P7Vf//+8oa/+6PuYIB4pUgpFYHzATctttAMD3LKVm81gtgEKelO0l7nKr2JUBjFAz7Y
RsY5McYYfP2M4nA0Q2n12TJQdfHtiy/Vv3nEBt1mrWKVI7daVFTYO6EfI+zL4Srl0nFB8MzBi+qk
1vk69Y8FtErRp65Q6hWzN2kAy2OSU8+7Lx41DlUE1UvuU6SZbbj0sY02zwNcUdsIdG9tbkoXPh7j
jh6vYqJz85YocFPuEXXsYEyZqI4imOq1if4PAAD//0yaS8+CwJa15+dXnJwpOVEQqU3PUO4gVSpe
IPnyBQQRFJVLFVBJ//cOviednjpQ3FStvdazN984JeKgfiRALGvYUb4X/OPYZwXB5XDGIG7rijtl
m8DWbL7E6JHv/+mp0Ekmw21atQPB4wV4ia5UKsVY5z0EOxSqYUhm/dG7HIwtmvUPl99wpX9jZJ/g
MHkms2a/R739UKqZvX0RW6mcUIr7wIBZr2jR6LuU7RZVDtTfxSTLEuJPioxKdIDvnXmBtW0HY13m
gLT9lWlh7aJJCm8RLJU3o8A2qd+PCtaU0F1mJEjRnU+qYEtonJhC3N3ktFNwMZZIAlmlqlzwttuc
YUKi2AALosul+pbhB9BtqSzxQjaY3qNTbKC9dsBMq/OS06HqOqQh6U62+PP1u2+4u4B6OJV04Vlj
O77bToKT/1oz4+VX6eC+C6p2vNjQMdq4iD+qsASuUx2P/efud/HT8SB2a4f47ebAB62KNMChAnQ0
qBKOhbu/qWk3GVTpwg7x3aK6obmeGNbuLmX+cBkgS4822W4uL53um5cEyOMjnkx5E/L9WRXgBcWJ
JTuX8cHGfgHLHqo5373S8VTpNxhlfGcBqWk1rO0dReVUUKbN72Oqa7dB4mnAzL07pi6tsk6Bdz2J
ZKsLaTV438T7/R9GeNqhpjU4BiOKMLH1x5ROc55TFfuCsBJY22qqtimg9rPNqOAfrFbaSH2Ouszp
iSG5UjXWa8cCrN9eDJNolzJ8DA0I/GmHhYeI0WitGg81C3PD9Mh+tCPl2hH828bCsnLz+V/eJx6t
aQn+3ufGbi/A4mnYDNfTo+obkjzBWO+BbOC4a3vrc74pNJseJJj1lgv7/e3Xj+Z64Gosts3yjwcc
o3PFp33TS/BZRh5Vah+1vJEGBQiL7sw9qzUaeRLJinMtTaZD9Ezb2U+ATrYpHafXOOvH8wSGtc+Y
s9MjfSqkGNDc/9mGa0661ONrA4fs5pNg5g3j2nNqlLVdTpffpZn+9Bvx/ZlQ6dwknJ9DTQaJOhrb
M/uJphgOE6onC4jlDpq/2mEZg8tv2q9/h/1DJKVyr8UeT9O6Rd+H7yrwshODSprXhvR2/eQgfw+E
aIsqRbQ1EAZe8BqXqdL702F7aACE05ZtCyfiH6bcZHSTaoxRdd62P3+LYgUFxOhjijjWcQLz+6cg
h/dwLC2zg+NjHIindlJLj0vhBBWSizl/fappYzgTZLF3Ye6YP/jQdt8CxPXNJoZm8Lbfq90RnmPm
MOxJgz7ZmWAg6WtO1JCegT6ekmcCn+56Y+5gye0UVB8DwG1csgkju+pqabeD/cqSmdvKO96LmBm/
PEZVNrTtkBZiAvwRqMx07mE6HbbxB/YnK8aistghvmlOH1jvQsp0Yznp3G29HL1WOmMBvONw8o9f
gCg7yEzLQqPlwsYfFH24PpjfFQ9/qlC9//Evpmv9Lp3Yp1B+/Yi4qiKjSetOAsKkjWmlHUU0NuRY
w5p8SpLaRz8d3oG8hePhGjN8EjbheNynCmLi+sA0dJP8IXz5g6JWeUiH/aZo+zIs4K8fOOOhbydZ
3DdQ3vwEC9d6hZrbhjrgyKJH2DU6tz9/jV52ZJBrUhx0/nIUivC7s8klpzz8/HgGDU4eldcKaz+W
ap7AHaea9qcx0Fk76HtIzz6lizje+NIvn5ee/mVO0r9SrmQXDWY9oWs/jFOuL18eqNUtJHFidFX3
y+f6/TaxzVETQv7Swg+Et+jF7D2/tPwcOgok6Yiokql7n0vaGdBzvDsUss+Ysp3jPeFuNzFdcE0K
m6F6UliRzKTDFGXtEIXeFvXbo0CcsTN+fGT68Q0q3dta56Z9mlT59tGJvdg14ahXrvOfes08jqn2
OoLkVeq0C9GlpVtTwetZn8kvX4uD1HqIVWNBnCrr/QEVDwXOvRb/5b3uVJDnj1cy7K7VtJOWmQXF
EBTEC6yy4vd9JQB75Qqzkndf8VXkduDp8pVssNSGY+N0AmrGHWeu05Zo9F9FAjMvZb/7LgZffw9K
32FiFUFZcWGjTxDwLWb4ER5b7omJAIbhdeynf2OVrW+wDhWTqmauVlx5+s2fn9leuZ2KP5463xfi
JYeCDyi0GigeeYVXH+b4fXVOIhiEZcecg71v30jcTGiuJzNBf1XMci0M+qQhkhNeouG1TAakT1uE
T7fyEfJshanyUpKKOPEZfOaB84SlECmMsNPb52fVKkFovZbZ0man99bjLaFZD1ikrMq0HxZbjHbS
4U3sTgr4WLhR/ssjWIB4pfejhqiSfuM906LRCWf+kENlGhLxrbNcldGz1gCNr9ucl3pEI650QIdL
w9z3+PZn/ydB0NsHOt1Wms7jAo7w4wtbc7sMh7OtWZA8Opl5oSigQV+tNUXYft/0qd09f7UZvSPS
XuuKzPw0fZb39QSOuFmwHRcCJG/yVFq/60Ek/vvmpNND9iNw416mbRkxPgTiyUA53tdz3oj5lBiy
DGh837Bqpft0eWKnI2LbW4p//egrjLEH32+REI0PNe+NPv6Adq1Vgh/06w+d6DzXMx+bz1dQ0RMO
n2AWxptYC7HS+VSdl3BIpxGzZk/bQUtkAXrNDYhTooH/eBtSX0+D6l740Mfw/qmRORQC2/SPdfjj
kUoSZGdyO2Wh3zkEAJ2KkOPRsvRqipTPCWaeQLDc23yMDxsKV/m1oPDjV5/h6KFMyVI6rFZdxfjU
lD+ePut1xweVH3K0P5XD3/cNc/3gllcFHeVen58/k1C9E1pmmE7nz/4pR6Eg9MzuD0bYTefqCeUT
O7Ner0Ne+GyCuR+S3drdha0/5BNQphyJ22ZS2i2ZM8GPh4qz/1+dJmELljEUbJtGA/+qcR9B9FQI
Ts+PMqSN7k4o7+8KM5NkHfb6LS1Rf0rYzKMrf/K9raKEDfPJ9rYq9LFQ9A6CW6PgWuyP+scWhAGO
q64jm8VKRFMLNwPeSLuS2N6FbaevRg3MwnoTeyhV/c8Pz/yJBfvqUdHQhAJOZfzEo+zXnEnBuINP
ujaJNyTHdrgeoieIWtlhAa2Uapj5+o/nMC85aJzxdeTBWB4qvHK8ZSuKmP3NF/7u3+o5WgrgN7WJ
/5tHhOv2A26aHhnZJmXIMyvNUXuWOxbPfpsbgtgocz6gT7Mqq1GzpwKgKVfMf6SZP8VUKP78QMAG
v+pQiBvUXmuLYY7ldnwldaeY/spg3tPchMtVz25QLvw1Xt0Xhd4ll04BU1hVxFHOli8h5Qlw/n5f
WI7PN583NJaQ8L4WRNf6Lh2akzogMbSW9Gu/G791UnX6O4+6shZ9nipxDoqlPIn5rXV9mlRXgShX
jyw04rQdtCCjICUXkRlu44QSUjoBgaJiukjvKBxjEh1RnlOVENPNOT3wnYLyY+Eyn6A+nPmygH55
zTBqhob3Sv2gXz0dPRz871xvhJdjQzTzGvpjo5kyfN/Rl67j70Wf1OBWw9V8FcxUFjvOy/x++fkh
KqzJ0+dxsTyCrJYjsxZhzXmoxSdobsWaGN/lKxyvwtGAR0SfLJBRo/e7otvBkLw8Yjj9uR0ktKXg
VWaLafau0hLgksAwCDl9pDXX+9H+XlDQqAUzNf70f/MdiEZ1okORrarWvHxvaD3GC0J6UHmfxMWE
btITM2IufD7zagVmf4JHc39pf+cNzfmJ7RzngYZTre7gko8iMcxNHf7pkXhsMgyk93V+coZILQfx
hLkXPvzhrqo5+l7gOM+nsrQ9rpQdqhcLj23MNtCn8/1A1XOifOhouns+FOfvHqZFXvzxfhZ/wxMa
SZ/Qds7vw49H5iUU7Bh2j4pbd6f8y2d2e82roTg/jug64AvTrse1PhY8N9Bln+3J1nvo4TwfyNF0
k/8zT+riLCkBPqlFMIm6kOFYo5A1usG05vWpRkYNAzgOMqZvnJJ3UfqwIFVxShdtsEmnGOIBueyz
JO7uOvnT66yX6m/eQuL4oY9He7lEvj0+iROkj3B4Tt8LpFYy4m7uL3zY0z2spTwgQZnb1SNG5ALz
/JYY4JX6hPNWBvUxrfGkIdr2PqktyK45kF8ekRb71Q2+a2HEwzyvG8g1in78kmzc6YimVzp6kO/e
O7I1t6dw4LF1U+b3x7TQD0P+HC0ZfYLnnWm0oyG1uZyAn9GCGXN/HB29c2AVnE8EN/meM9tbND/+
RfQV2/pDU8YazPycNrPf+/EPeKPtlex+/DsvaAGjbhGyna6kHdjGe4Ij6guM6rvY9t1Rzf+TX6Yr
a5koPPO19PmmWBHXm1YyHo4ErX55Ms1L2+objM0JzOXFJa74erdD+YmW6qxndKjzEg1NWkXguuED
y0n/+s2/lmAOizNdakrRTmiTNHCPJ484zvrlD6udJqOl/doz61OGaBBET4E42d7ZZmVjffDKrkSn
QyFhZPcPPoVqFilweqG/89YpjuSBWph35i9pV01HVAFM15jTcubfM6+OEDPqHb7txwpx6h8EkIx4
TWb/2P7NO73TiVLFqhT0uayfA4ybRGTu7Lfn+bGBlu6xYdum1cIRLl4BiiU/mTkRU+dL4Fv4128r
4L//8c9//r/fhkH9yfLXvBjQ52P/7/9dFfh3kiX/Xi6lfzPpbxOBdkmR/+u//rOE8K9v+6m//f/v
P8/83f3rv/4p/m0b/Kv/9Mnr/3z8j/m3/vsf/wMAAP//AwAIvKZh4SAAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693dd4bad48b7-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:59 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '21'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '56'
x-ratelimit-reset-requests:
- 3.714s
x-request-id:
- a95cc78f0e0fc53eb245fdbe9d71936b
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,384 @@
interactions:
- request:
body: '{"input": [[8134], [2308], [43673]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '65'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R5W9OCPLPl/f4Vb723TpWIQNrvDgGRkwmCx7kCVARETiaB7D8/pc+umZobq8AU
Denu1Wut/Pd//fPPv01a3rPPv//5599XMXz+/V/fe7fkk/z7n3/+93/9888///z37/f/W3mv0/vt
Vrzz3/Lfn8X7dh///c8/0v+98/8W/eeffzflpGFN69f9MvIWnnbx7i9m87FBQt6VGfjhmzMj2ix8
XtuLCtWQbNg6XazMUY4gQIF5Vilv+xsarRVgKGGW4qXo7HIpja9K+7jJQIKF3vvT4zo/IT2zJIKD
3kR8UDZ3OB2mgq1fxttsH+f7DBF/JTOXo9Sn7e6Qac8bLYiXZFL6jYfh+dFiKpdZno4qa20Qnwsn
Jm72aMLP0wHN5KJga3mlmgPfnStw4qAi5rJcp+OOdxH4ejqnKprKsto+ywAlO75mj0VvIeZLgYKK
eG0R1xhRz9Bna8BhHhFcmzvh9/12naGVlhyI1Z1qMfiRZSPWNC/mWffanK7HrkBzulaJ+dpuEU9c
PNOKc+aSLXt7Md+CCuixXhvMQ/s+ntLTtQLTmdk079U8Hc5EG6BtxZ5OhMVodOnRhmMjbbB4nHnM
jgaXULzIW2Z0+9ofXX2dgeHNfWIGx51JsfAaKLuLSU79O/WFZWwAUK1uSXCa6zEz6B5Qci0+xJpv
NqkcNKoDu/pWMeOdrGKxPYYXWJ4uIUvczxGJXX/NUX1MGmYLa9fz8/XmoWdFdarZ/tqU9Rm5qHBQ
DLJ/NSESefWsYePomJzh5JrTc4joSjBxZvZ1aM3mbIch7G9Whpvd5l3SFBMKkpVgQqI8KKeo7HPI
5lXE1tYuNCd9RhLtoeCQBVNw7we5cBw0efsNM2vJEJK31SrI2OVJkmqxFxMRKoVXlFFimRR8MdOv
OcrW7wszon6GxGvUQ6imaEV2RaX3PGSNAfMim+PCEq3J4+k+/OKT4Ib6uA52XQKgxwGtbl3VT3sp
5yAqfKNMqkQ5dK43oditA7KTp2UpdqExgV3EjCpzYotJm9YZzE9DTLz5YdtPm8gBWGTxlvjlpi1H
1+0VUMhsQ9HtOKWDWskSJLzwiVFLcT9d/KsO53h/JgZ/b+PRaK8BlII7eMbQ3Z9eindQ7Qc7MWdV
9GKwTl0D32usMvuZ8h1dK2AtpRvxvv3NeKRaSDTznspueYj5/ugcAFddSAiVMp+eWOzNWW8GzLqH
OOZ1X08wfDqd+E4thIiWPICePQ60ASh88VRuBYqKitGhzSEeGfiAZmjPKUjJOp2eCU1gJ/dHHO4T
rx9399UM2p0sEaN6UtRsiazApqtrPL/XL7/polcAi+MjpfJ1aP2ueYMH6vF+weKdBGVVX57a6sjd
gfjbcymmFBkTbIbVjqSn+d4UaHHRYL9e9sQ6VoE51nORraxRH5m1NFxfvAVRoBymjnYcdSkz3IYj
TfJmxD1pYTw1apPBnjxMZhlFUzLp3lDkzosCq6eDXXJV7h20kY8RW3f7k5gehYuhOF57sl0GaTxl
m8MJvU024EWZjf63ngvo5puJHnf6uRSXqahXFy974d/+fDZXX0e1IYd41lzb8uOmIV7JxAypVMdd
KZ7eWlnR8XEmDs2dlJdTVMAPT5z0XonBnvIM7mGbM2e32Zb0YWsZfPGIxtxmPj8TjSJqOjEhSdmg
aSNPDjBFOpEj3jpoYgtXg7I5vphT8b3JVX3TQak8T8QdlLtoM3V/X/VyNrGN/AzReLuPHBYGMunU
VL45Ld+OAt98YOV10sT4GbUMTkbgsetqHfeca1GHJOuCqbAUraex60u/a3Y+FJ1geHAqUKzPAbNv
/qfjy20gapOU/fCVHQ1FRvv6/qRFt7dN8bzhCSX0NjCSxXnKs5c1wSHIbYYfn7f/24/VIxs/zNt7
TSw6AjLKkeOR3afciqruaw76cpGzred+UsG9d4DOo/3Ek9SVvRCqc0HfecLctJTT0S4PhSavU4Wq
0b6LJ+00UXA0vMarRV2ZbcAERtvrfUWcObGR1C1PCRDhb5g1q1bo7V9kBw1tgMiWrfVSvhzQHcqy
PhNval5x2ywdG1ZlssQafbXmrz4AHQ6MPcx7a07Z2enArLSSvp/4Y/7lT3PwEy8BJjTemixAUXtJ
yZq4iWjcIglBSYeR1lJ86wWPRlujWtsR/3acYnZpdQ9Qvk2J85RsfxFLcwupMznDEm7W/jRbvAPU
+vcd2S1VR/B2pgZIuvGI+c8LLvlZKhW4XxeCBItaEuK2f3jIiXFFdvZRpNTOogx2TW6wPemKePD2
NwNgmSUk4u93zIOSJyjtLJ3FC7lOKcbXO6RzY078h7GLxRJqBxL/U2J13+f9uPNHG9hTUslmdUvR
pBPBUTrX58Se7qYQBr0CKh1XogqejHKRxGMAF0lPqSzrSt8eB3MAqVdfxHbOueBmcPVQod8HOuyJ
a47y8pWg50mRSWy/jv3QJo6Bhlo6kKxbm0K+Q65BEn3WWK24nrZDkATgn9OM3k+l2jdrHofIOa8m
uuDjte/YbDhBt61TLK3Tcyz62bKAZq9d6N6sWjGKLWog3Tw8ssGfqRRSYzrQpHaPF33h9lOUrC1I
lV2MV0vVQWOidAnk++r4nc+39KXQyVgdVrsRi6jHJo93nxzdPuqJeMyfUJ9cPEXz/Y5T6fXRBW+d
lKLrpw6Zvc4Vfzq6mgLj0TtiKV5y9JGpASigPGXXbVT67IuPaFk4QGxzJ8zm7mcOrIPsRHzaaT3b
ausKakMKSeDUpsk55xjpEL0YvuuBP7oxPkEgWMqM7B71/JDrGlAlNontuTOzlmL5jprqzllALd3n
ct9VSDmoG+K8zYX4zisN1Cy08Gptlz0dVjZG9fZ9p8rhnaXcd9oGdqoJOKpxi0Sz6U/o7Tgj247n
tRCkevHVvjAz4t9QZn5O83kDcq1T4rERejoritNv3rKg7Iue2muTwvJRlcS6vpt0GpMiQEVsWszx
kSp4Jo823PqCYW22k1OxStQAvvznh7c9X70tA6TreUfII8BiWvimrX2/j4p3MvS//V1NQkZ4drae
/gjN4oRm/WaOlfxzEJPLFxmM90PDDN0rzUl5UBs1he3iZYEac9JO2qBNWvcmNk3f5TR3vEYly9pj
ru2P4otXCVQ3L2Br3ROCX8OWAxHuhv3mH+/mTQi3C5wZNiI7Zevl5qR1IlcICcW+/OPfF0W0+M3D
sB9n+NhBU1guewT8GHPJ9v7mGWX7K0q/88/7PY/Ogr5E4qAuJVQs3hnuNa9Np0nOdbAZ2tL5bmmX
fD4ec7A29gEv8Cfqp81rJ8GX/xILN0+THubtCWbT5oZnGzymfHV71oBPC5sEzgb1zTPQIrjUZE8X
J05RmbuJBCRz38SMNlY8XU0Zg52Aw9zD2++/+bJAj5QnnuWw9JlC3Br5buRiEe+XSAhVv4CYzx1K
z9ba5IfcUWBeKxbZLTZZyXMOCQqxypmnzOxy4b1ain54ve5no+h3EgKUf446Cc4vz+TeLLRWv/ka
WMY8Fd3z6cF7FT8ZuYSWKbt8lcEiHHbMGXZmOfkBOoASFXfmMHvyGUnNA7B16/zxjfE4mFQVt2DO
tuhjICmRDQOi6DJjulkl5USlRIZne8NMX/hDP+60YECv19rGC/deoNFeOPKPj7BM40XcJ/apRvFS
Db/8pS6nTdonYDxnLdkeCg9NGioV9OuHTa2WPQ8P+wjWmkioom2uMd83uwApFjsQommH8hNtpATt
7Fjgj+ooolXf5wCSs2ezrXDnfocmXqwOyv3XT04s1++dBZm5mtP3Nx69HMQdFNe5kptSEH+M7f6O
tI+bM3OlGr2ojsZ3PlZn5hiD50+nQ3CBbzyqktsNfVr2CbU3hhvx/SQ3+dU5a6jYEI2QT+P0o7na
OCiXPxsKLBT9cBIgI6InwH540If7RkHLy7TEalCx+I8PT6s1ZlZjFuZn2gYVyqXTnViO0iKmzYII
zqP1pCvqjj0PjWEGxWanMVzyMh1fIZ9WX35B4fzyfGEp5R2S+x5hjY3ZT694UIrJIetQjeJfvwBs
bYUqX3wRCc6z1U//rZg89NPdNi8/fY1XloF7yhxbAgrUITheV+JjO5vptx8Y7fk65k+00+B4aQ7s
obyZ4FKHclh1QUk2J+/lc6zEF8CH+4O5M0pLrqZZgi6rgLL1++ijyTVaGXVnHrAdgo0pT+4wA+bc
JRK0eRbz98zzIBben15N+2MQR4D6Q0AIxVM6abswXD1Pmown3TPNKX2AjkJBL3SxTu1eqp63CAW4
6oj3duSS//bDrJSS6VWG/U/vlw6Y0cnH2lHgdLo/Ew+V86PBgtvx2U/vg45huV/5mOt9YHLpebVh
vJ8a2odt6AuLrQ14hdaWWa9PLuihSipgKFj99GT/ua6PkqZH2pOYt+4Yj2UfZvDDdyLvccn3947D
9qYYLLLzyuTv4SbDrASPjk2FEH9fwxm0VvNkpj/U6If/mnWMNt96LfpGttUEFlctp/IZxpLXhXUA
x5Ue33l7MQVKPAc5x5fPfvxdrvm7gO9+k7VIrZTr60uNum2VUh5vN/0k6WqFiPsiX76clNPpxQc4
PjKdXdJ7hSZ0fk4ocU9AnKuv+4tio2D4nMs5c7dRaTL/qRvIkNUGI+VG0+7H75sLtehyXPXlp82a
BO58sSfOZNz8YfvsMagJqTHNT5+UX8PnBD9+pmtJFvf7VyahOJrtsTw4BloqhX1HWjnfEWOXMX/M
gnsCX/+IasrtYU7ttGlgqtfjL9/9x43xAYZTU7Kv/hDjDF0oXLru9NdvvKuu+Y+/k2C/mBB7xsMJ
9OPeYU6RMCEW552C5KBrqRffduZYXisP7HabMnd+UNLpGjgWvDeTRwL5Y5vDEGchLOCuMG9QsDkA
m1/QkfsDXbV534t3+7pD9D6u2Pa1jP9Hb9QZPuDlE+98QeZSDvhKPkzPrqMQfNlF6LxYMuZ88VDQ
yNNhjDdLFkRg+eIZDweNbtGTbc+QI36e2Qc4MPvOPHcb+NMm0mcA1rAnxPqo/qTmRw/9/ITO/SzQ
Tx/B9AxLcmhaH02L+3YGb6+8fJ+nC36Weg1to3bP1oEs+2MuMq5JtymiM+rm6FPLex0S4xky/2F8
0sm98fqnn7/8c5l2yoNaMFzXHilEfvwffyzUcovcs3hvchs8DV00aUsSP+Gij9YJRbFbBVSuep72
B368wI8v59v1zhySRIQwQzGnizFa+4vyOnhgyKhhehe80in6bAA6fNnS8aFc0ym1XhGogRWTC7kM
MbtdWwMyEnD244PTOI8vUJqXmm3168mf7tBocD62M7o8LUg/vspFgx5datMfX2X3Ust/9UPHQJbN
tq4qClE/GlRdvW+pOL47A+0qe0V++eFVt6RwPeCATnFQx+N3/eo3762vvuaZrFrQ6iTDf/3RpOoB
0s7Wab59n9BnkbJaVbPIIkYc2LEMTxShU/t5ks2s+vhjX48afPTgyswAyYjOZ7mDvn4lwwzNfCqx
HYZpWNzI1twVMecPUwO6KTRGGPrE4jO0w49Pke03/vQIMw2drGpk7pgVPd8f9RN0iSOY7ye6/40f
AjtZO/Llr6VYVXH3x//I2Y36Xz5/eoJ5dRGgaW1fD3AICpvOonwVT28j1dA8ty9El5VtL5NV5sFW
t1Wih1IupmY81T88w5onbf3BHL0DHPtgYLuSH/zqYE0e+vpFXz5Zx+we2RisbYbITz+Ir/5AyaRN
ON3zZywqPzfQY0wqEmhEQ8Pwcioog0pl/un6Tif3WFOQ8lP/6xdzgPhiI37Vtz/9mLKnt9aQmuxq
sn3ib//3lz9+gKftsCxZpaJOY9J1z0i424rRwN4ddt6gkEA132nxq0f5+Wrx8l1Rf7itvQYupdwx
LE81God3M4P9RHZ0nsV6/Ocv4+vu8/1e6cfvbGjPgcrsdzVDo24qoP3wuX2dPF9a+52N7tq6Ip5y
m/vVhFwKlq/pf/NN+fql6sa7LIgZXtx0nHdpBjw/UvriPhNCvA8WOlGnZvhUXsvx8WgkYN4yxXLV
h6mcPiQDFdvwgmUcaGm7TVoPUmguxPa6V8l+9XP5GCtiLY3WH9WbxFUd7zsW5PugHNytmcNKVA3Z
5k0Z8/dwlP78tuLrv32/ZwZVsQkI+fqZP78N+aBHNJ1reckrfElQy6sZ2/BRLUUqOYMmN9cjSTKX
9IOV7yzEPqnAkk5MwVeKcoBjYVzJdp1vY7HV1jUQS15TrmIHjaA9O/SiuyuV60sff+d1jfJ9fWTf
fjK5fd5ThA4nhqXpapoc1v0Eic9Kym+5aXIn/MxQupCHr94cfP646fefn80852nEbFXFDexjzWXm
9a2afFmRCdZiRb98JYobtZrJ8MVPghf9oqfVR5FhtXl/6LSZZ6WUujMDYoPnf/jfkWJ3AbbuHZxo
/bOkX38ZHdlcY/6eqILdSv+OLitMf/rNH8twTbWHED4h3fgQ0yBKDl9/EXdszMpvfAk0DTpiRd4C
iQTAgijUz+RUz44+Q4tQgefbfpNNQ1exuJdTAV9+y8xl+YyHZD5k0C3UB0a98xJ0be8PsB5fW/Kb
Z+J9aiqgc5vh5XXUyrEoHgVaPY3wp7dNNsaNB996xTN2lFJ5eZ8bcAfL+Os/KXHtGTw29+0Pr1L6
6PsGSubvmX+wi58/X6CPexnYtdQdxJfJ66R965U2eCrKkZyMCuLjSWE7G9187qc0h68fTHS68GPa
jPcazZJ6w3aqo6Cpfm8sTdRvi/lfPivdDiSHarVcYh6EN5MqGsiwTZfVn1+1fFmbAFbB9YrRDWU+
//XfqWVP4rnbwR+V225ALa9n9J0oPWptZzdB3s2uX/63SMdMvd7BuNQV2bh3Q0wnr51Bc7tFLNNI
gsao+9TwAW/x9Q+dWGL3TEYPMfpUgxx9z0cuCbqlpxnBIc3/3g8pBDYs6N6f8usva0jeSCvmhy33
RbrdNeiLv8RoPQm1Z51O6NufZCc9IsS110uBxzMQFB2jk8kPOKshxe2N/c5zpikmCbB+HVDRepXP
50F1AqLORmbv9FrwctceID02iKwX46vkbhGF8MVbts7mnfh8z+cgvj99Ylb6qR89L5r9+UvdTe76
uzGT77DQ7D0tNtdJDNaoJsjn45O5+afy5UV9lcDt1OF7XiDFbdG1F+Tr1zn5nRcxR+MdcuUDYVtT
BKaQzP0MvvwfS7V6SOn74GD01ePMzO5PNElsF8CGHSVCcqhj4YmjBI/GeOBxo/nmGE76ZfXFVyxM
M0fjN39o9dRD5r2dU9//+PS4PfsM2yiIR+/1pKvepC2Vd3VY8vBwDcH+FDlzv/VJ54OQUDjfR3Q4
KswcG29nwPV2ebAw9Z7ix79hu4y2hLinh8kf65EiuNtHtqW5aopLPgt/+vDHJ8w/vt7OghPz6/cs
pXrvFZDLbEMs36clLZywBksjFsN41pQjAxNgdRzvLPjqcfb1Y+GBu4SCHa4Rjx9XCa2ViyA/P2Dq
sVmsxnS2Jp7tP83JfkkKIsZYEvs1Pctvvk+wLZYGfr8r7I+owSEsQvp/AAAA//+knUuvo8CWpef1
K0p3Sl+BMRBBzXiblwlexrbUagG2MWCMDUQAIdV/L+Fzu9WDGnUPM5XHacdjr7W+vc05bvnQoLVf
kRgGE98gtSO1TodwEH79loDlIzwQQzMZ6MYWQObLt4cd+hxKuPGqgNNqu1k+ZX/5+deNJ8ZgZeTF
ggoz+MgGa5qs4Nv1UhEdeeLIatLMt/RQAVnhHsRP6omOm178rb87A7eg9F0a8MK+Tr9+VrPxuC+g
9iIht+lU8Oe//MjTcV/nCNChvgRQWtYz8iT3k9DDMaggI2cBOroXNMzNmldQXnwVuRuPw84s32EE
iip4qnsMSEy6TNzuz18/e7deBAlufPovfwxRIV1++oC0a/0eZrUTOHnTX/zjJ3P6aVLIFo/nrx+l
r+GYCbDqmhRzcK0GutzcDgrXzEWaz7+K5YpD4c+f60WaevO9+0rQdvgHOTCfI6XaHuZAdpU1kJru
SalWTr10IrKE9Hv40CcaZRbMwtONmE9nTGYvNgwoH74exiGuvOVUf0LAdNkS3HZd6/3dr19/Wbt7
07CdHx6GUBiwuPWrh9uBG+EusbgfH2qWa9m24OevVI1R9DkU3fKXN4hXrQZdZkg1+I/fVMB//o//
h4mC3X8/UZCb8xuDg1Z7i/FNcnDJ05DEl88DtEl5DAFP3BdBUDkUPNMLGtCjyCBIwsUw1YpayqLs
35D/xYU3Fw6PocMyLmYXbZcsVdz38CCOLDpIqgSW82QzMOXbOHDNE6NPy1r2EE2WTrRAFovv9XVp
AXjVJgmWMB4WqoBMir+DgrxFQWB2udCS+cCKie6rb7DocO2gpxlLsPIvfaCHXOphjl8lFotzmEzD
m+kArx414tyKAx2PKMLAvT8s5Nz5T7FkvmcDPAshSYfkBbDLVqEsntWSBPv0A+ZJcVJQCGwVMMn4
aMY13jrwkbuioANZQiON8GDu+oqYQthvHa+ZAxJcxq0DK1Is7twMPm1vR47zaHhTx2QpvEWJjacB
sMnk1XEon58vIaBpPDbDIKc+PBFJI2p1VLy+S6ccik8+whx2Pjqhu8KAzxh+SRFVafKZizGEX20N
kB6Vn6Q/3W0In/13Rgcy3pvefPYxlApyRWp4q5N5+lwEAKUlRz4r5gUFhpaLMtdaxBlEkS4XsRGg
qXIOuZxvDMCvl8jBj1TNRHs1eTGTJu2hDeIjscE+pYvyFBWorEcdqeYjLGj4eUrQn40HigZf1FeW
rXL5GRZJIGvk1swhz/uw8XYfou+d1RuFz+pC81wh5PBmpU9fowkhuxsbPOforM8jc2yBmUKBmNWl
aLC9qF+wLG8Y7EWhpd9F1kuYchpAPjjghgxyGYD29D0hRN50mIXTI5SKJskxdy7EYh4fegmhnC3I
kY1rMWecmMHP9X7DcwnbZLlbjwpEw+Cgg69PxSI7XQbtc98Qx7BFsJ79sYL3j8kRtcp4b4zB4QKp
vQ//zjtFJ6TBu60+MRzXeJiNR9uBkx9e0CVJezDj68GHka0/kHmrLwn5nZ/00mOihZfCm93TewUf
qZ6Rn/vRML8/dggvjWMFPCNMdEbOrYTfthAxjFttIPZLMaA10pZs+1sQJ64EmcPvCpl42jfkbvqr
tD9JbMBcurxY2+gOAR8YMbF0gae0wS2EjBv7yBnEKxjdr/Zl2/D5RhqnvIr5ol8UWBqnCTk1yybE
aowcHIpAD4ThNBTz13AEUFOFI9bhTOhU3FcI22O+D+Zxd/EW5Tx0gKWOjxRt7xZLf3bvQIZpj4L5
boGZ8n4JtSpY0MFhT5SeEs0G47s+4Tb+HIdBueAMTl3tE8VvZoBhx2Uwk0ILIatY6Fzcrx343u0c
JXCsB3IsvBj2p7OAkAgRXSfuach8HZ0wL3D8MNKBVSDzYGJiAF0fZku49OBVaVfkOcKrIBYhGeDr
5ET8a1NQWtz6AB7v7xyHwOX0+RuOPOiydSUuI9GEfvSwlo9t9CQBP6T6EA7sRRQMiUfGbhG8/jNd
75BQhSdqDbhiHN63ACZP6UQMTSS0dxyfl+g19YJhWYtmjo74C7nwI+Oeu5Q6zfhb+fv8SOvD9zAX
FbHAUUdBwOAcFaP5rGLojEAgSq/7xXB7ihcI59uTuI9IBfz7sWvhVwn2yBDuZjKHXmTDKqtclEi9
p+NDqHPwzfMwqGH01ee7ydjSwAQtss+3O13mYoyhLzcHvKuQ2czKJLXA8kgUsFfKDP3z/vVhdHSP
xDVPd52O99iQ2ws1iNFoqrd2t8qCuDsUAWaoBgaRXWyoECMhl/IsNuR8LlKw8OMXbevnUb5ke+Bb
MyYmSyq6LGv6hV3wTJF+NS4JbpFzB/ldMZC2P5NibsPUly7Vm2BsGyFYgZhUsDiLR2KkfKHPte8p
QIJBitRJtAp8+lxteJWfTgBzRi7mcucwcN/wDXJ72S4W88wFcACf47Z+TzqpKOKk7f2TIIju+oSf
fSWJpe2iQ/XK6FIMJwEIO9lB6HKRvWUu2hiCQ/ckh+e+Lqh1YRhw6+QAGeP+1sw1W2mymx0/SO3y
YzKLrqCBs9K8Avo83bw1BXMG3W5syXl5V/pSK879r9578rUpeofZZ8A1+wgpzfpOcNT4MShAvQ8q
Ix51XLtCCNshK5DW+bO3rAzbgXtzxUh7ZCNdFlgbUrVTLaS8jo636AfbgE1qHvAs79WEDjRYAXO7
AGSC9+qN54uBIZOYGrJ33/fQCalfg1fa+6gYg1anF+FqQ21dbeRd2KkY9/CawmoMQoKi+kqXWlHv
8hkx/qY/WrL7CHYIDzDOyMEfdW8dkyaGl0o7ByxUDsme6B8XViFvIGQ8PgmdKtIBGDGv4P2NZH10
udCAKE4QQld1BfMBqZY0sSeVBItoJ9xdTGzgBDkkSvy2vYlIXS5SokRE51pK1zEZYlBH8EkO2+th
3WEgnFPTQaoEeTr9/ERo38NAkMGYLEdz+oLnbQ+QKQ+fYUkPIoSlcZ4IUpW5WLT1ZcM+Lzuy/Tzo
Nj0CyDgNyJiPSjO34jCLW31Exxde9aWZvj7c/Aa68qai02NQpTDqqxw5Zv4qcGonKYjCUMaiAJpi
+/cBDEL7g+XdHdEuj8VcOuydHh1Lbt+s+Azv4Mh+JqRZIzfMb3b+gm/HhpiZ7xYlo7MPpMMxfuDq
dfx48/y6pHBq4C6YPxmrTxN/8wUAfI+cqfYc8CnuZ3Gv+GIweZXmrf1zCaH57RnkcY8efNpCV+T4
XEVI+fZus/jte4WV3XXE5T/BMN7G2ZeesxQQRQ6GYYWLukIB+QTpdh2Atbv1FrAShhDHzM1iP6bG
F+78xkABQzU6Zt5nhb0g10QtklfxaUO5A0u/WMRT56whH/1SQS/PAmTi9jnQ93fM4fiuTsRdto6A
uGtG+acHZsJHYH2eHhVk59eOHFQc6b10PNYwL8qJbPU+WV9Fe5HCjvWDERzw8OdvqkU4E2eYG7p+
i50CWh73wXuZM2/tkriXx9K2ydVsimI5uagEMsx6/CoYpeEn1TDgcxYConyyh9czXOjLonU3UGBP
1rCH+TpDtxAJ0phjPMyjXRgw9qcSedt9mltdjEEc8R4Wdt9Ds9PWyYYdeb/xaQIeXdP36Q5l9nYm
3jNcdYozO4Uqd/qgo6I6ydL7OwW6yrNBSC56unDHewjZL8D4uXueEvz+ehoEpu4iG1Yu2PTNB1a2
TWR1a5WsN8HO4ftp88TVpTKZO1u7Q7fIzrhxO8vjPo2vwddX/JLNP2/1x4jhazc+iCtMnUfdHQyg
Yp0BUpv2qy87nFrg3YxH9NgLQjE6DJuC8/MtBPMNh/p4D70O7i/3LIBfDLx1Z04SYL9ZhhR5/0zm
8eHd4R5aCrEHRtXnY+daYk01jrjedZdMa5LX8GHdlUAKkDBgJz0p8MYGA147P/Socuky+Ii4Y9AW
Te+tl6APpEI7HogOIoXuAjnh4ZEdpoAx902yfnAZQOPoegR98i5ZTfUVgDvj18iZVZtSZXJ84HUR
xZ/XOA6Td/E5SINnRrToaw17Gwh3CK/TgTj3I20ovtw4eFKZBwmIbuqTeYYBsImkBLvL7A+jjwse
qLyokD9/vvlFOEqDQVTw8geumWwelvp6wlh87pP101orHOezh/fn2vK4g4RtwD6aJ2auggmWyRVc
GH8/CinLK+sRlWSjlO6dL2Y659ssVKF//gapPFUAlkahhcvygsQKJaXgitR34aieUnKc9SChlK0q
ORWJin73cdr8nAS6ww1/L21K5zHlNci+UE+Q2yjDqqd+/ltvFD9YreFxrW55gneCEcxtsnjeRxAq
S0fIvfJVMXfumYFb/SKmfxb1b24PEMhmh4gNgoe36aMCjSNpAmksn8Vkz1Uob36BKHqleOvz0TJw
CBMVBVfBpD3rKb2ct1GDjIbzwbLpNdSm4Uq816UCn+kjxWBsGQYpEbMmtAUHAQra+YEZ8bkvVpme
YxgUuoRMmXsMuH8uMZhXbQpgQ55gvs7CCtWeLYl5XKWB5msqQRo0WbBH+bmY5teCoasbElL14kLX
2bzFYN3hJ/KkpvLmToYQLpyTED3PdMo1JEvhc/APeN/zxbDcRa6Cd7cVAj44Jt6aQxvCOGUkpORo
r+MUCBl0DFMP2mPg68vrFd5l5JRXUjiCmeyVGsww7g+fYHeKkmFV6vgCw/V8JQ6TGXRX+skK7lT6
EHcs1eTzWL4rTIL4S1x8ccB87DRLHqWPgfzGGvVxJ9guDIy5JCfcqgNl/XH9+7zz6TYkJId1Kgvq
esDyRghng08hFNVTho7HiQy05DsLFmdwxHNypfSX1+XqbdbESOKm+E4800ntkBbofB5KfWgEKf/5
FaLqcQ1oqdAWqu69whDWc7LGU4Rl/xV9yTF+gGJMIpYHc8jkmPt+Q2/Toxnui5eJHDu0B+5a3gRB
xYZL9K/1bJb9QfEh68Q6lnE/NlNweKZy+bCfJLZGrlmzHbTAVk+Q96VawbknMoOC+XREu8anYQrk
ggNOrbwxl06mRzNXyOF8LzS8VBmvz19DFSBP7Bex0Y6A6XT/ZvCrnzq8FnsKlscNbRMgRxn9ziP9
+WG0zi46jCdumLd6KMQopoF4cnX9l0/g7VO//vzkuOV54Fh9jkx+1xULQN8O8ul5Iao3yg3Z2y4D
P/p8RofWQGDjJyn85cnj7k7oegzLEoq6NCH3YzHF8n6UARTLqQ6Y9qjpy6eZcrj5U+K89Aysby4s
f34YS0oTF/Maiy4krGBt9yculooxR8hz/EjM8PGmI74iH54HsGDZoCd9Eb3rBXBYs/Hc62NCRT91
5e8ymyTVDq0+Uc+ewVi6drA+WG3gtW7oYO2HOUn2zqqvQ3+G0P/mF3SA2Na5C95Z8Ml3Kf6KjwjQ
dDVCoHQ8/5eXl2AWBAgP3kxM4XrXx0lRUzkKYzngLzUqRjrsFbDxImIOe64guB5CyWOaEEvo2XpL
xlau9KvvUieGlHay3oFy9nfEtQdV53f65SJu9YOovDvovXJ9YGmfnHpi2kHj0SLJt6mPl0BczggL
/OMfm78jrslQMO3XVwi2vB5s61HQi9T10uV2Z1HwrDi6zl1iwW29gt1J+iR0vdcY6Nf6GfCRzhe0
vxx9sEvXGm/nw1vPU53CxgsjvN/82xLuNAMe9WOAVKzBZIxqpwI//97v1AWQa3Q2JJrNHEqy/Zd2
1uXWgWaPF+Te2CzZ/JkBW86LcD/OR4/GRlPBLZ+S48uEyVj7ugLlVSPEpNmx2P/y+XL6nv/81FfM
bB9ejeMVs5s/X+3F+QJHCg102/wvtsQih2Wu02DH3HbJ4hwu44+HBdyI38OMnNNdsBtlJsFp3nsz
MeL6x7fw4SIf6Er3Bx926bFAfgR8MIfVkZMMJQZ47RgAlmfKuEBq4B6ZidF5RGRFG1rrbUD6Yuag
e6y+C0upwsH6fi8NFdJJ+N0vdAj6oaGdg1u4dEeC3LND9dFVgAF++qjdgJfs+bdpwWbn5UiXes/b
qejKSdBQ1WDYeBwVtWCUfv6ZNR6f4ovi0JWztlPIwQNMQjrZ6+AhO5zI0Qc63bPaIwUvYR9g+Vvd
6CrcIwYOF73B/Za3vtT72rAHlYici2IV+0aQLtA5oxWZU5x5i+zgDF6DZ0z0Bc/DpsfKj/8Rq3KZ
ZHos3xls+0l82ev05VePri1Og9flwINVzOwAft4XFWWv1wNQLrsw8LNnr3g90bKZts8H3fvNCiiI
Krq+ivEi2Spz217P0kkSzAx44pRHzq140/bH8+YQ5sSKxlFfh3XKAX+9P1AQ2LY3O47BQe0tJ8H7
ua+T6fWeGLhPzj1m22Ue8OmhY/hwui0fNEVCM/50h+8GHzHdHT/DGshyAL3XWCD9sbwK6kvHHCof
+UXQExwT/ObCO5i7b4WMdDL1fgCzAUJTEJFzghjQvEcllCw9wXDz+3i8CRhufID48XRp/vLKxm83
3urosziir2RQ6UWCjbfwBLccZB4wxoBl1GEfaW9ekDShRRezr4fxteQaBIA2m16FBfiMvQGbMWs3
/Vc8TnRnRU5IKhN/0zPKh+UIkp1uEP384RuSKTUDURwhYt07a9i3qOZhfK4jos7EaZad8Kwl9fhC
RFtcTZ9d7mLBSX9I6HBw1gG3UcaIeia7+KI5TkOfN4GDws1NMHfcq3Tn450P2TvjbLxoLOiT+wQ/
/UJWtx+K9XbWOuh/L5dNT2d9Xe9qCidIv8Ey7DCdtVfF/fINKtS3MtBqnSoQDNUOGUMJKD3ZcIRJ
Vtubv6wAac1TDnfx0dv4sVSMVyRByBreCdOQJsMCr4ICA/PEBeB1qegcC6IEK7j0yH8LezCLSt1B
Uu44otRVAaZcli1YsRlLtCJgvAUIqw11R+8wU3BBMh+KVoFvMU+IqkxGQw8it8KPbB2Q/eNpZBTw
rz5iSZdgMneU1ACW8X3LF0995xy2iTeQN8SAb5D06CakMK0kP4C0Pw0Lk4AZQInmBKmfTqeRL8fQ
uS4OOagmKNYd3pVQi6NjQDY+NsEuZqTp0wNk4UdeUKnxaxAwho8CGBgDvzMnAXZEQeiC/FyfDK7n
4XdZTYSe8bmZ7TW9QG0yVHJuJ7P5DnDl5GY/Ln9+4SMfQg4SPy7xfnlX3tIaeQ+FKtJxc52wvvYK
uANpf+gCkOcY4Dc/QbBz2In4L1cfxPklYnjatQ7a/LS+W9by+6tPwS7TH8VPzwFkBZvcderR3Xb+
ZLJrj6T4PDMwHqKsg0GfW8hDJaTjnul4OHtxQrQHWw/Lr78h7FgnoFt9Gq7R2YLoW42YIbuZkuis
YbjznwYxZ1tMVuxdK7itD/7V53HTA+nSeBY6pOnq0dqLvlBmH+dgtQ98gdcq4yH5+gpKj/vnr/5v
34YA2i+vgR//goeBFkHNHNeh5YuiAlmQM8hJiJrsclk2pGg5h0TDt5RSIX1JsLi9E+KxJ4/ylQ07
ENxeEXEJHZI5mXsX2jmNf/wZUC2vNXi9ggfmpHyi6yGPQmDnSxxk523i+G64mqQynxpLbPPxJu9i
cJA4k4nJVY3B+lrTWf71U/T13CV/vPV9bLzgV39WFF9ceAIhQm7yzT0qM5YFh7zbJloqLqGvlbch
O2u3QJDKJJmSUB9/55X47fNI5yO6jqDTex15rXUqqJl9SmD7Oxyctv7DmuRSDXkVaeR4YtJklrCX
AZsIyh9/2Zeeo8D3XbOI0jjRsCLbHSXLmyLiBlbdjJzPCQCfap0c4kM7kJzZ89A+fxukXT4smD8E
MzCeKNl4X+N9Hrl0gRo9VcE+ugd0fXOXEkhdHeAiParDuPUT4OdhN+QYZK9ina+CC7/tVSROXyNK
l467w2UQdwQ50pdSLgsZKNzshBy2fhBm3AMGLX64eL7h2Rs/07WEP3060lxIcPD2ebic+jO5eVWt
j+X+XAJLmmxiP1egf/CzqqVffrXYZ9OsE/ex4PyhKJBnHSczfIktDJrkQg7O8estv/y08XOkuFmT
TKH6siB8HVJi1FcvoXQ49jBaTiFm3aYaplRuN/1RE7znbk1BWMXhAR4CB5m7RgIrq+6YHw/69WP1
1R2OFxA6ar/V93hYJ9W3QIT9iriS/R5Wc38e4c6Rp2DekXggP79WRdcSHc61pXPuY+fDV7B9YyAf
Tx49WI8VsI/nM/jiy4eOiqAocOuPIlO4MjopHrsRKp/Lkfi9YoH25HQWDNyyRreJzehKBCkEF+Pr
4n3Qew0ufdkFHrg80dGram+9kD0PB0PiiL/T9wkeOu0O4oOaoQOKnsVfP/mnz0rjLA2W6TmE63uW
if3zm+hR3qFnHiu09dvoUtw3vXivLIZnttXno8SvkHwDZfNvUTNvegs4rNjEP7OtN71elxJcNIuS
wDZmSky/1OB2vojG4+svX7WwPn/fwdKyA1i4czPKo7xQpAlr5I3ieOjBxscxFqwd/fW3YLXTLUyv
xqWYtvv86xejM9XUYdn8EeiF3CVeenw2mM+VFdZ+nOOm53h9TspjDKt7OCLDfd5/+bcFQt7BYIen
80CPrxBDD+TPzV+XCbGmiPv5dSyNpVrwnu+FYMtzWNr4KgcMsMIfH1MnsSvW6xsbQHXLiiDp9Wow
P4s23PgnOey9fTPXqtzBIh41klmvVt/yTAu3fiDm2ac+4OdnzeX/j4kC/r+fKOgDF5PDrjc9vnyw
LpBpeyB3ItqAvnBhwE7zDOLD0gP74uy4UGbRnrgRu29oGpxmKL9bO3h53gzG4ugw8NRJKp7f55bS
nClHwJO3FyxZdB1W/WvnULmWHTJv3kQnB3wt0NrZndhe/wTTp55HqCeRRuy6zgvyZmIeAtBdkIHw
qOOjPfEQYUHCfVuLYH5xCQPFR7uiQ9u/C/K4JxDka6MQqzEfzWJ53wqMd9vCTxJl+hCcPQ0EJytE
x7w8FPTOlBbY3g/JIq8riEOEFM63JUT21xyKtRSGGqQcUYPrZKoexfdohsfFSpFT1BEYUXqO4Utz
AmKU3r4hi9muoFLOBjIr79gsj6+J4UM4WSgIxGkYJw/HEvVeE17Us9LwV5Zt4TEDEX5PvVXQ+17p
ZVe2ZuIZLAGr/UxsQBBsA0mpfQ8H/dRDWcxZony5uJiD03yXqrh2kGl4UbIwkmNAtDNUVAD2Dej+
1EhwWRYdGQH2ALnhNIX2OY6Q67AXsERDNUPtWsYBlEWRrtd+tCSlSQrivNl7QW4HZYX2V2Sx2Jq1
t66XKgTezRiweKrXZpy8LgRVe1bQYegtQF9M4oJzOvborPU+XfPnJZOF42ripeU+3gQl5wJU9f4g
RuKJw3cQPhmcXtsEBinPlOyDSwkz64nJkSsbfb4YJwYE/cQQY+el3sCU/AVe4wYFUl+blP/0z1a+
fesWGVfsFuR2L2P4dD2KvJL1vfWyXDDoapclfl4uxTIujxDYT9NCuhv1Hq2DooPdgYUBcFhMp6Ge
LzD3T0zAl33cTOca1NK0Z5ZgvLF1schLOsN1eK/BNJZtgcW9FUv8Z03wcuO+DaWnsQbgWFyDpYvO
+igWbQmv38ZH7oM9DTOS9RE+7Qyiw7H3Eiqemg6eBCwQfxVBMdfDG8LTvdkhxGejtzpLLsDP3W6J
M9WYrt6St1DeXRgsh+LeI/KpZuAFjgU5e6aYjJ2shPI+mn0U7aMU0Ns9DWGaPWVkml40LC/XgFC/
3R2iJZyW8B3Z9XCP3lawPiI8rCJaMYtyiSFGj9/DOj5gD+s5G4KyFmU6GzezBF/GPqHDoR/Aqi8J
Dy7CmBOtjY507Ymcga1jHbBDNg0zKbAG2AK9kf9inx41D0YFAg146PDtu2b43vMLALsixvzOLIcp
XyUI/C84B8zWIaQWfqywk1wYjN8Sg8kbPhgeznER8LrX65Oq8Rz81PYThbvoXuBMaO/QUEsVFZB9
6zM66pw87eFCAi27DbN/mmeYzMQlx05MwAqJ5MMaZh+ErttAcHJpGYAkSSQq5Q5FS9MrA40h3GHe
8t6UamdDAokkRcjemx99OQzfDA5v2SQHbHL6CNtLCeC7i4Pdtt5vj8yanHPnPR4G9pusD5b5wnKt
Ryx866u+vtGulgDbXtFhMRM6lbkVQ+QYB6JOnK2v58uYgi5zFOQpde3Nk9fFYPdZbxgu5TFZEq/v
QbF9Z9Z9s2mx3h8MBy4pvhOXY9dinVh4F7+5e0V6HFlgZYgoQPV6L5F96hVvESRXg4NlJ4F4NDv9
dz6AdY5fyA3qr07rF7Hgh3EfxBS8Dx1EJlRk+Y2kQJTr8e+8QduLY6KNkd9MJqhH2flYzF/9Xq2o
uEiFW8nB7uIFYKnzYwoffIXIXRFRQ8/4FkvHyLii5Bi9Aa3edgyGico4feM+WQVWkn76ghytPiXr
9/KpoZZEfrC/mvuBktNkg7PVtH/1aTFW/gJRLjDEbLxJn92TaIhFibWgxdgCVH0sFaxWhyfHi7gD
9HRwNcl+mQcs/uqdsBswWBuok6AS3WG/TUgAAbWQbHqQLNlKW1jxlYmsTz8X43EntPAW1F+k3rjv
MH8HjMFBNU9EO0cILFfJGuE4LRRZh35H59ek1DJN3gMW6loqhvKtSLK1jytk8t63mA8v8Q6Gux2S
uy4SfYFfNZOvFU6Iy9R1Q98mTgHQ2wppAAsN/tUD0SnGAI4i9PCjb2y433dsQI94N6xmbmtQed5b
pFEsUkqDqyEtyZtFflquHj0cfB9q4v2In/sopXPInQ2gsyEI5FmMvbVQLz6Ajy5FWorv+rhwsSW1
rndCqBWVZh+eXSywLGqQl7LHor3IbgmfZSqQq2G+9bXpv/Xf/hmpJ9CFk7QeEsS02/oQsAz1nEN9
iNngd79WQ1Jc+OIdE+mvyNDJVk/hy05TFCgiGqjNChe4W9YC+VZJwSwbYQqtq1mioyvum9WN4hlq
YnkkKhslzfKRfB8ah1BEASt2yXpU4xxcyzEjwV58/85fCPb7lkXp4O0Ajpaoh8+8VpGzne9l77qu
dM/qO9KNqKdDzNwg3O3mMpBUNveI+/ZGqcpqFwu0Fjy8e4Ac6o9IQc7Cls3s7QQJMqeLiLxHKSX0
ebBt6JtWi5TLuWvo+X7yoYNiJ7AWTy3G5001oPkyX0F1Pr8Tst0HKH2KG6YuPoElLfocRj2pgqFm
vWLByx2CZJyOCLH0Aqaw+Ggw7qTH33pPnHq3QTpOOtEzzA1LlB846JkGJorEEYqls+XC/II9criY
52JthLoDb+xS5J5ZHmC771pYwUzG/Wq63oh2c/g7b3gP+jbBWz0DK4AKSbb3R+6vN4ZvVv4S6+EZ
BX3iAsOv5pbBuuLr8Ht92L/Zhmhi9C3oFZdQclfwwQJrHgDGds/D9C4dg2XbP2qwiwLTTvKIrfU1
mPXXakBvMXriN+xzoJfgZksBFg2ikHMz4KP94mTpc70hRGhRYNJXvXxA8S2gEw6HRS2aQO4erIj3
U98lo8BFLjwr40hMxvt4lJYslD652wRzeH7TRXadAHa5owa77X6uO0RT+bFWASl/52/bL6DSKEIW
8Z6UZm+Vg5E/dWjzLx4tg7KCmDIdOnimWCyJV/XwUZ0dhEDm6fh0GXs4SNszVNayaWa5aDh46gQV
2aDm6bogCsFVGMNNbz26vF3jK21+jajKuUqWNj9qUB2SJOColzbrB8nBT39JYGSyvuyeJwj1d8yQ
Q2hehvnc3i0xZSQ7EESzHz46GBRArvSK+ajnvPHJpR3km/eRBJk4/ukvOFlPASecdwNLF4sxHDo7
IEbt8eDbsIwGts+Lg0780Cka+hW2mZMSJTu/dUrLPSPKx8JE+vbzs3GSFJB3jYrMM67AR1JvASQv
egmgwZqAg214h68wiwOYl1GxiMsph97L+BCvYb1m3b+tCmrPMiT2WF+a1e5xB3S19FBgiRiMDGh6
eKxBGOz4/uItpsb7wH4erEC61v0w//Y7TkkerBlX68v81X2YMxWDrI9XNwuU1Bz+9I3m0auhMuRr
uHrvPRYJK+uEliwDvBU88J72ZkPve7uHVVD75BiX9rCIuSoAz7EIUVfuoPN2j9ufv8JMJbrN2KdJ
BTXznhEX16ZHb2ebg4p4f+JnH/HNGqnXFWpqeSJ5xJ6HPSx5DP2d9cAwYQ19l2vUAs4qUiy9a2vg
/JvvQ+zBidhDLRZUfRuMHOYCRy6WGRazYS4QFuOJ/Onh2tp1Lpfj+YXchY0HfFiKAKQ2OWCeeCrg
ZvDiIRetXwxXsUjWcxQK8uaPkcFjc6DuWf+C7fWRW7KZN3FR5sPUkrZnoPRZM7JFU8NvwiY/v0H3
0d6toHkz3xhWbK3PUZrBv3yQrN69oM5BF8C3ts/E35djMxk1kwHOezVEn/FcrGc15CCcri5RLO5c
jJALK7mJnRtClmjQtbt8XZileEV+Kj4A1R+LL/86Jr/8icP+lcGSrybigpItsOHaIRhYWUPGBx/A
wrq2AEePVYOBY/tilZFkgJ8fSxV8BLOchjk8VeM2Yec5BR2DXINBZCFic+ZnoNWL5PCVOW4AX6yq
z7f25MLUn+xf/R/GykhHaL0ORbB/mBmYrzc3hUcsBkSrOCXZO2ROZRPFSwBbUS5G3Ob9330TH+yj
GQacu9L7zU4InbKZ9n1a1PBa4gw5B7MbpkY6urBu05GUGavT3bpkKWxg9gh4pc+K5VqDAPz259CZ
p2S9PPYrPB6NMrgQ81vMVZqu0KDxZg5MpVjSobrLWz1HGe8pxbR3NReW/ulL3L5+0a8vdApcAONu
9/UFyJb/5S7wNMzx+NXQ8TVVoG6zESnBuS9mUzZjGFtCi+y8Bs1aPi8arFxH/tNfku/VEGz+EWlr
5AEyMHEAH+3Z/dOrCaqpAF9plgR7qW+3PHhjICjaG1H5iBvI9ezc4bqsIhZ39bH55Wd4YZoY87xX
FVhgJUF8lpkQ7M5YoePduCkAnSyLmOdeLsjTfIcwtYSQbB2hZqsXAdSSxMf7tTeLv/vHHo4DMntv
LGbGG2YgHYtmu09HfX5PSgAlp6iJlmM5GY8voYKXe3Mmh95M6RoKUw7kR+cGQZMJgG55Taa3dUXu
p7b0Xi4GDm5+HqnKWSn2wj0MgHMzWHJ4mnyygOVkwDiXKhLEWeFRFz9cqcL1AdlbB2uVWKmDC4Ih
UVou2fxSW8OkJ37Aytl3IPNrFICfiQXSPK5pqI2ECg6dG/z847CwucLId+N8Dfa3vgfTtAouTFNi
Eedl1sUccOfLz98SbR+5YD1dxi/wVvER8KHXeX/1RXsnNq5yLqXLvNx7oL3KKKCrxyTj8+YYf/XV
H0WoL8M63+UkJSHxc/GhU+NsdNLPvwRmqQD+oCaZ7N6sHTGe2NH5+4PhgS7fDaRcOa6hyVnLAZGX
E3H5WgdjM9kc+OUHFItNMzZcGUI+WjOiSpxJl6d0LIHzMRjkJSz22jmNY+lwDgvik3KigxmcIfx2
9gVTGCne0n39FeyiucLsg97oyp+DGZhePAf7j7nTl7OEFKDK9wtRPmcjoeZDEMB4ojyWN560OMNX
E6JO+JCfX93qHfO7j3jxosKj5mOWQPv1woBdaA5mR/a/oMO2jMIPt+pL7lo1vAXVF+8P/UBpvndi
cLo/d8SXSj/p67S8AybpNLxTcestKIYY6LsDRyzkWWD3kYxAuq/1JVjjKASrL2BNCjTRQ00adcWM
07yD13ZMUamUaUN3kJ2le1BV6DR5XrLxjRXclHMdzA8uATNTsyFwXwYl3sZHyCE49xAtloLlRuQ8
WuDyC109VIkxYyuh9ttXoPy8arhWonjzC0sMjzvjhC5nE+sr1/eKlNXPHtkf09M5YzpWQH3dC3S8
lW9vjdRohbvT+sQ0id7eWj8YH/zyW2mylk5YyPhw4wnBxs+GgTPHOyjH0ytgInEq1nN0kaQtfwRC
ZGJAD2TuIaoFiJzVrPQ/P07OTI1fnhdSqqKllHfLXCD0Fit9fLQlBze/EpwOuEkG/+3l0sGLy6CO
ormhTMnkcMhdFLzM/lHQh/luhc1fkuAjOsMSFM8UwujqIz8q1+SlagwP958rIHqHYw+f1QsPxaj4
bvyl3vIkaOGKGAv5BmtSLKPVgqPlOshgsTHQhbnG8Jcv/vx7UUsCfOAqQgejH4u1vdR3GNVSTw5N
33urESWjtPEdzC/eM1lOXp/CGnsvvNO9WOfUl5RDwVkN5Hg1V0wnUAUwY5oOBUZZNdMx3h5AOMQs
lhORb8buaF8gwx4nLNXsrsBIjS0oRAVH0CWbm3XoPzGIGKFDYcTtAB4Jh6EE2ppoJBr1FbJSDJ9f
Dwd482fz2OYQni5YDrjay8D8aFMevh8sIVrI1duTiFYMwaO9k2DK9l4zB9EFPO0UIvShpdfujKiD
JglH3JbefiDjPbfA58Deg89oKpR4RNDAxjOQLZp9Qw9734CXvMlwa2N/mHdG1MrBPEHiJ2zrbXwl
g6BpC1Ju/mG6rCCG3P51I4oc3fSfvwbdmFlEBZzl8QCtF0jldQpEvT4NexcJPvzkdoOimBu9v/x/
6p6UOHMdDOB8duYfP0PKnpu92TaX9NdBDOYvtybLJzqvcHlRI9gbvZ9QABke5HA8kEAv1WJXfINM
cBYL4k3Pk5UKlQGbr5MTdePHq/uMOeg4Bx0dYK//iy/yyxoFPOrTZmaNi/L7MxbKGnjjPo1S0VkM
SPyOVQtun16zvzw3HcVzsXJ9pcDltRhYyM0JjN7RvwPbPPjBykVDMo9pLMD9Mh9QNEe7BOP9gf/5
8x8PpL96AeVDd0RHTRQo5vpeg8ieRBRo5dObzePxIm5PZAsEo2boLx8Bi8Q1/t7rd7NIkoPhftk6
iHsWgOESnFyYjSMJ+J0JB+wKOIMnS7AwE4jHYVGHJgSBBHTit6Kc4FRoZ3itxoQYZ+xSzjsadwiP
V4SFvenoxAweDOhYlgsEv74187ctYslpQosUXllSfnxwX6h5SbCtb9Wsk/BRYMelBjlIfeuN8/Ca
IfoYGolk7tXgbf2BuBSvze+/vdWQbBdKh25AaJcNFAfCC4vP1RnRdp68uZzUGQQYGEG/9TtWRy0U
yJ/mM7rINV98HE1upY0HIC8qYTJDrzWgcrq/SNCLTjE/uFKANHkNSOeiZ4EJC23w21/RN19g0mqm
/+Vt4vls0PDkjDAohVNLnMI0vB9/ggyLJoLcbC14/hyskDu/6mC9cwrdVfnxC4baPiIVcq+CDuY0
wivEEZas2kt2fHSTQGJJ+e8bHAXV9z6Gu9P8xBGOdnRsuDSGi7k4W30IhzngHhc4ibTH0r5uvW3/
0j9e0m39mbmaVBcuALpES6MwoUK5T6Eq3s9Ep5HmTeJyy+H5/nwiM8LqwMfCZEg/HqfTqPZwEV1i
aK9A3vKzPuzxbgrB6MkqMl5eNlAbn+9w/awAs5bYgpU5HO+iQLo9Uu+RkKxfImuwtrOVBJ3ogPV2
GXKI98yb2KJpN3z4vEpQPx5AsEjci87u5HeQmS48UjUu2PjOLAAnBgJm3SzenrHJ3oH+DplgcGrV
2+dMiuHNrT9YvJnNMB/Tcwt7xv4gX2O7YlrVewm380CMDLtN+fLeNSQUlhvP5RJ6O9grdF0w413m
kWJuPMKBxsjexNp42XIEzxLqcmmgw6l3N57Q9nA+wwtJT97Vm8IVVrDDrozXze9RFGzPUM0FBgul
ORVjJHv5X15YvAh4vSofhV+eJifZ6wH3uiklzDg84c3v6UO9V7b7TETM1NmlmZ9c2YGzgkeiFdzT
6/vhrcEf3/dk9l0sL9dn4MY3yY8/76yaUaB5DknAnulDX/f7oBPjTngE64ilok1uXgjFpiVEO3FP
sPEUHhbpaSVG4511vF6qGGLEYGLs8YtSL3hoPz4f7G1TpM/D8E3ha0xDYkk91tcaMS54xt6y8bMd
ne6adIfRXRqI9y5FvX/eHAsyh1ZHTlInOmYfCweYR6cgbcViM69trv36i8HnVi/JcgKVD9doZcih
7PuBnvEphokl5CgauH4gNVPcYcRNj4BNRV3feIMtT2eGx6sUfYfhslc74Oihh8xHD73RPYkWYLzW
CDiEfW9XrZIGlwIizGy8cobcpYLOPtaQukSnYQzN2YKNnfUEgWzwfn4Kvvz0hHQ/OgzEO+gdfHyr
EOljpDWr+bX/VT+8T3lpyC4IZ3jjq4Zo14gU635vtTCrxgV/HfZCaXcvFKBPJo/0IdILWr3e+S/f
Izdlz8nPLwIUTnv8udVRMdonMQdbnkSqz420O6hFBsmTnol65CYdF+w+BC2XXdARZkwyMtzFh/BU
bM/0FNXi8+PjGw/CXOtlxbLLtVq+89UV5XNtNPsfL932H1m2dygovxsV6cPYDyzTsqEkfrt38Fjr
gKhMRAsyMLkPHdmSiCbjizcL3oh/+kqsRx97Y3gSbJhmjYy8Le8vu9yt5IN5yBAS6bVp40lPYVum
Oa6l6Nss0yrYsI29JNibZu5tvJWBN+GcB4wtBgmtgkKAi0xVzPTipyD+Wc8gv387uD3jLx3bo4Lh
La7eRN34+poJbQmVJiqQpnFts7p9F//xpZ3Q7xt8UIsU/PrB+1tvA842xfSXDzEwS3lYmK+qyaLe
cgh5WTzQ+K3dYWGMJtG16FPgUmhqsP8UAIMd2zdL6QYB/PUTio2f8Wpu93DjG3i+ni2wkvMB/+9n
FPzbv//7//z9FoSuv91f22DAdF+mf/6fUYF/5rf8nxzH/5Pwf78tAY95df/Hf/xrCOEfn6HvPtP/
mvr2/h7/8R//vv+bNvjH1E/56//663/b/q///Lf/AgAA//8DAOaLvFiFYQAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693cc4cf823dc-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:56 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '298'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '58'
x-ratelimit-reset-requests:
- 1.666s
x-request-id:
- 05aa395b3d571732ad5050891d1e0e1e
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,385 @@
interactions:
- request:
body: '{"input": [[8134], [2308], [43673]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '65'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SZS7OCTLOl5+dXvPFO6QgRkUq+GQpytwoFL/SIiyJ45VIFVefPd+g+0R09caDE
1p2VtXKtJ//7v/7559933lyK4d///PPvo+6Hf//X970yG7J///PP//6vf/7555///r3+f09envml
LOtX9Xv892H9Ki/Tv//5R/6/7/y/h/7zz79dzBEe9XLVLeL2KGljsb+zYB690UjVpgAcOROzHSZ3
Y4o3MqrmdMPs3tHjsU5DF5leo9BFwEok2lePwbviEqsmtZt5vN8k2igpPTHzvkX8eiQ+6tRCJivb
Njt+zA41tKFds83mUMWdspAUpL4ec2ZcUR7077Udak64vpHf90+XV+HDyZUSii591fGbtFzDQS9G
4mjuDk2L2/GNwkSqmc+OSzFE9HSHsYjuZB33q266qtkeBm1cM++dfeLXKzZDdFmEa1a+DBPRRdmr
qFnrG0LyK8rZtx5g2JTganEY85a9KxWt4RITPFoPwRBNfNRP8ouFh+whRDZpGTKUg0bMAjs5D4A9
tcyQfUKI75tivslcJPalwbAcdA1X++UdzovLiXZScsuZ1rc9zPFiR2f0lORTeZnbcIxlCyuDNZr9
nd8SZJ+SN3Mq+xlMTTkVgMJrQIKSbQWdXbIePh/LJIcdyQOeOA+A7PqwyUbyZuJ9jtcGSh2NElxH
m3xxaz0XFLRt/s5zctwqAf99j9hh6x5y0a+8AiVx+2K+U207XvhbjKYDNqiCwpWp0MqTl5H5XpP4
KqKOq/30hDgHTCI19UzxeXCuP56vM7OnZx+3SVlF8NDODX7ek3fcm+m1BbmsQ2JPzzAeywlVsIYi
ZtYxi8ypW82OWmPziJm77tr1t4uboOVWd1kweaapoFX2hjCBmlzi696c+G6pQPm5D2Tb7qCbwlcq
I8kSZ+Z0J6nj5nFM4LU86sTC1EC8X5w04LOiws3JfIvJ3GIZInXcEyeVZPH49Qsc4wN93pV7x62b
IUNd2yc6qJVo+tspo0id4YAEzF003IzWFGL7+qF60jrxeHSnCk4uJMR7TU4woo8LsJpyh/juujW5
7AUqXPa1R7X6yYPB3NoyhFYdEGfU426KwqUBUT0/ko2xc4RQtssQVrkpcH3MLwGPlde4pOnsyNab
shVsQdo3NKpzwMumveWcVisZurdREveeGUEfTMsQmRJhVA0fSSwSVz2D/35GxH7CBbE9i/3ZhuYh
21QGjrn2eSpwfq0N4qe5ECLqxghu1nVNmw+6IX5JSorOTTinz/AKzQQnBCgSu+HXH8G0uUoZUKbu
8b1wfCRuxaCBsVnPv+fd5+2nVlRI++cLL0P+7j7K9RGCM7ue6MJzXnlr7cCHB9QJnl9PoXlPlJWm
v7NtRzzFacSUunULqbbckr13j5pvfSVYlKIjwVMLzam1RaVvfYszc0PcTrw2DMCy9yXtwvKDhi1T
VbSQ/RnBvhKZvDi9C9jOyJqR5PBu6EddYpS7dY1nZWWLKT5rgF7rW8y8rjzGY6F+fFiUU0dMK80b
fog2azRtXx8shtcU8ATnT9j0A6eHw3SKeavVrf56q0+sRr6O2ruPDLSa4z1WuPtuereMsJ7aJKGK
NrXNdAtWqp5b7ERCvXM7fmnqDGx09wkpq6dgg1dVoB0+N7bJIzumwskK2PXEpW62p4gPp5ajLD7v
yWYY3mjykzqCPuyPJPnsvWCKrFQC/rndWbg2ooazfNNCIt8OhOCkNFuZTLUudzJn5vDaBeLg32RQ
zsSiUtL4YpSZO0LvbCe8uGy0ZuzufgEH5vrs9O1fXg1cQ9/fS5fliBD99juakfOWne7bTlA8qHe4
TEOJ2XlxR9NR9u7QVrxga8qf5iCys4Y6zce0De92LA46rtHdvfXMWG+rQNQPS4IbgM0sXr5yWpyq
Qm/PA2XEvr3N8eMPe7SRE4+4r/tevKiuvCF/7a4sjI5DzsdiYSFH7Bs8R1mTixCrIVoo0ci85U5B
ohvNvUY+SKNaqrTxFFw4h3ImGVjvgzruJK9WEMJPIMH4spGcn49HSEhuMYz1OXquqH1GY98jsnpG
RiO3eZdBTOsjWZWbOv6gQvWh2LYco3n0FtOhq2vY8DdjhWN9zEl/uS3chV/TVnIGU6ymdQRL0tZY
1jqOpptVRGh5TwqyXRSZ+IwzPwTJOqxoc1FKNK2z2tZ+/Wm9F7yh5nE8Qnx+ZcSpbDtQtuQaolVU
p3hprA00ytlCRdpAMfE07DXT/uRVKC3ciJFzgWPerGOA69qTf/O4GYkqSb/6Ee9gyMHw6y87NdZs
R3Y30ZeilyDg54yUSfuKeXJYYTRnbMbcXf0K+qO7rOF3/2xXbGPxOT4tmNHHDfO2q/IJJTsbooWl
Eq8cczSWk6jQoUtmxNl+zEacXx/15xeors/WjfLIJ/end3SeZcu8UxzzDqKansQytKoRpzLNEIoo
pffP3jOnWTPXUNoWCtlfr8duMLs3RuzlJuTrB8T8olQKfD/H0KdW98Z2FoHTkTk9OLqCumtqGmgZ
7igVwq6ClrwhA6z6F6wly1MzLobXBebNLaB7sNp4mrVdBQ+VeX/nwZe0MeBd+W+s5J6HRGDvXChf
yxgr24PXTU+eXaBM3SNz1rNj8Jre+7U+8UHDIKSt+PZ3hFTrcSRkUfOuveRBorHFs6Pzk2c0fO10
LbJtbce86LJAYzy0Muxf+wMWVzF2tIi4/O3anB22Up0P9o3J6IwrROy3sWja17UwQJHuJ4LRQuvY
4rzqAd0hIr/5yz+r6IiU/vJk9k4KOr6XpSOU2jVnof3Zd1MdVxIUXJjf+htNFx3mElpV0sjCQ2wE
vN9mEfKTaUO89KOY41ffIfXuLl4qToNo4jwkpLy7nIr7qsiFjLw7vCv3jWsafdC0/QR7tKpgZIEz
rMTYJvNRN8xTTqx3UZjDh5EeUkelJLjlekAzuz6Ch7nN1iKpc/Yw4hZ2g1oTd/BfaEzLfYViNzD/
/CNX6psN3UHrsUQfSjd+5yf4LV0x2+qdTuyesg3feUkCeyTmmD2mp5YomNGpaDvU93QPuudLCKvb
/JYLnz6O6BXNl1i/3RIx4sWmAp6NL2adTrWY3sNlj5SRenj20y9r2RYammcvEgTyq+HgLftlZig+
w/GVm9yP1BrGQNmy7/0zJ9dPR5jxucVWRRt857Uawfo0Zszaz+1uWMo21uaxJRPnneyaP/+96RnH
dX6O0Nhk8yeQC7jscIFDwze1tkffeUobK0Xd2Nw6DMckyqkm1U03jR9HRT8/8nlnn1ywIrJ+fpRO
q7sTj5A/epjtpCPW2z4ORjrpMjzLdP31X5Xo990yg/vscMQyX49oUle3GpTz1iKhSufoq2cYllWz
o/z6LOJsOLUjMLJ5EvuuWM0YX47+n/6H6S3o/u6PoUOERaMpOZOR90Tn9dHBI2zUnM8eRgLERjn9
7JSVKQx2lkHq5Q3ZuFYhBLX6I/rOM0bi3o6V2XPJUfM5nr/ny8yvH3HRZzE3iCGw30wGrlxdavuE
hGo8y4WynTDsBboxk95NMc/DbQVOLYfMl2qz4e4ij6DeZiULgnQKmLVpEjAOZcjw2n7HU3t08eK6
gRlzrcgM5vai9uFy6XW2PcmZKexzpsGiXmHmuVGfc9noZTTc5zYWK7dGAvS3AoiVLdur10q8Xeeg
ITjuDhjm62cj3LrLYL1pP8QaUBD86anUKxuGu7zpRoKnI4ganahSz1NTDLANUazHMfnqj9lfwFqj
r/7h+hMvzE+KnAR23N8w++v3qB+NtV466wdxtMaNlXTYWvDVK1q1ZpizcNZcgAZhSsoyIwHXVFSj
HXyuzN/a6260lvUFkBGdmBE/PcSVuDiDrL0YBbbKg2HSsKHFnlySbY6uguuSo6CJM414IXc7vj1a
MlJA1amuVqLrVwfgaD5vgW3Px2PzqeM3oELWZDxTLWYOKEktFBk7zIznpRZ0bPoeGUi5kjV+f4L+
E4dH0HdJTWe+PXXTq+sVSILHklmPoMlH71VRvRfVik7nlYfErYlrECY18TS8r0Gf3l0fUu/pkqBb
7cRoNGcDcKwBnSyqxVPlRYWe99yiWh/3SISzpkDfemJYemHOgvE4QpnvHbJeHR8mjdqHAsgXE+Yb
dRWL6KBL8IAqYVnoMTE6OKhAHqD55rtHPiWNWcCk4ivbkidtxqUTUlTzijLjex78+fRaNE9GzLyr
uzGVRdlr8HryOVmbUt6M/ifzf/8PIyLvUdtZAoN1PmPimDee82+e0zXniLC2tdcNb9Y5oO69LqkU
7OxOWSnDBfWlOxBL8ZRmei5dG7BZPBgm5zBneB9bsA14iKXbHKPJXrQ+amebFTPPzq2bqDD2EBQr
G6taEYi/vE98+qQ1BFEgrDCSYHa3HIaf/NYMLcnuYC0jICvYh91gvw+FRkt+I9uv3gopiorfPPrW
AzdTtW7lPx6wPx8awaN2UOAtn32qPQPUiVYZNSDsfGXeQX+iSWRnVXNP9YaZcL7n3ddPgEnWOZ34
Y/rqxz0By45K5obm2eSVkgL6zn+2Eoaby2Z6amFXFgHZfnnDtPTdJyq7/kLlj7zJf/qNRHQgVDm0
mRCH2FBBoa7BIubcEU9hx9GT20BsbzSCRYhVDJ4ojN/8jofbnNTa9TkfMOfLDn1ugafBw8ksqhh+
F9Pi9L6A+tkRYsyaHNHOQhhEJZ64zrUh4Lv1rgWQkjVbV+5ZvJlWqKhQnhij5rDufv4WpRraEmtI
KRLYxBl8z5+CGl/jqbY3Pexv00h8vVc6upelBBqkVt/89W74ynI5lKl/ZN50uYmx6z8VzJeFQyzD
Et0Q6f0e7lPpMuwro8mdUrKQ8tlwain3rTkl2T2Dd38qmDfaase3zdsC8FqPrOKz0/RPJQwhWtgq
8zo1FMMcM+uXx6jOxq4b82qegbhtdbZxr3HOd+v0DVFip3iuzUIkVm3yhmUYU2ZaMjeF1/kX9FiY
jG3hlcY82H8AzuVOZUYZW52QVsGomePpxoK+ugW8Qc/ox7+YaQxhztm70n7ziHi6piJu9ImEMOlS
2hj7OZpasn/Ckrxrkjv7IB9fW3UN+90pZTiRVvG0j3INsflyxwxUKMEYP4JR05tLTMdoVXVDHVfw
Nw/caTd0XJ1HLdRFkGHp9FygtlhRF1x17hN2Oh+6n79GD+dskVNW7UzxcDWK8Kt3yPFCRfz+8Qy6
TXyqLjXWvW19k4A38Scdkmlrsm40I8gPAaWzNF0Fyi+f1775YW42PHKhlUcDvnpCl0Gc5sKUHz7o
TRGTNLP6pv/lc/NacLbaG1IsHkb8hrg4P5gTiWMnDrGrQZZPiGqlHgVCMQ6A7tPVpVC+p5yFrn+H
q9OmdCYMJW7H5k5hQcoNHfm57MZz7K/RsN5LxJ1668dH+I9vUOXaPU2xcRKuq8XbJM4sbOPJbDz3
f+r15XFMd5ZnyB61SfsYHTu63mh4+dVn8svX81HpfMSaqSJuUw7BiKqbBofBSP/yXp9U5P7jlQx7
Sz3vFbm0oRq3FfG3dt2Ia9RIwB4XjdnZa2jE4uz14Jvqiayw0sVT6/YSaqdQMM/tajQFjyqDLy9l
v/s+336CCLShx8SutnUjpJXJYSvWmOFbvO+EP88ksCy/Zz/9m5pyWcAy1jZU31z0Rmj3oP3zM+uT
cPL5j6d+7wvxs10lRhTbLVS3S4MXb+YGQ3PIzjBKcs/cnRN1LzRfcfStJ9uA+WiY7dkYTG4gciGi
RuNDzkZk8jXCSVHfYlEuMNUeWtYQNz1AwHxw7yBLZ40RlrwCcdDtGqTO75ijrEJzsG8vBX31gJ21
RZ0P42yNUajsXsTpla2YKu98+eURLEG6MIfJQFTLP2nEjPPkxl/+cIFmYykksA9qU5/vTwPQ9Ci+
eWlA9Cy0Huh4bJn3ml7B1/8psB2cHeXFwjBFWsEefnxhvVnL8XhwDBuyW68yP55LaDQXS0OT1p8X
vRtXP1isJn+PjMeyIV9+mt/r65KDO1/NWCikLVJXl1xZvp7jnASvws35TQ3O4KWDSrv6zMS4nScW
uuDo+c0bqeCZpaqApleBdTuPcjlhyR6xdZHj3zz6SFPqw+dTZcQQ41MM1pC+wTg9dYJv9BOM/dy9
L7987Ntf24YmOL7DprJexJ7NG1Pw5iDDLucTZm1Eu9HIVAkGw9sSt0aj+PE2pD/uFjX9+GZO8fX9
RJuxkthquC3jH4/Usm15IEVSxkHvEgCUVLHAk22bDT9r7wS+PIFgdXDElO5WFE7qY0bhx6/e495H
pVbmdFws+oYJ3tY/nv7V616MuthdUJTU49/fG7/1g+LSVHRSB/P7+0sFPUOpY9bG7YOvf7qgWJIG
5gw7K+75oblDfcfuV6+XsagCxuE7D0m49MK4C8YLB8q0PfG6Usl7mbkcfjx0/vX/i4RLa7CtsWLr
/DyKj54OZzjfNYLzw62OaWt6HF2Gq8Y2WbaMB7PIazQkGfvy6Cbggb/WtLhlAVkXi8qcKs3sYVu0
Gn7Oh735diRphP2i78lqtpgj3kFhwQsZJ5I6Ydz15mIyYFPZL+KMtW7++eEvf2LbqLk1NN5ABUmd
3vGkBk/BlO0Uwjtfbog/ZvtuPO3Od5gbdY8ltNCa8cvXfzyH+dnOEEwszz5M9a7BC9eXu/kcs7/9
wt/9W9wnWwP8og4JfvuIeNm9wcvzPSPrrI5FaecX1B3UnqVfvy0sad5q33xA75umbibD4RVAWy9Y
cMvLgKdUqv78wJaNQdOjGLeoOz1thgVWu+mRPXttEyws5t83q1heDKyAehYs8eI6q8w+O/YabKRF
Q1ztYAcK0u4Ah8/ngdX0UASipamCpNepIqYx9PnYJvqI5rEt04/zaoPOzXX+14+mtpwHItfSC2i2
diebz9M0Odc9Dc4Xfc9iK8270diWFJTsOGeW17qxgrReQqDpmM7yK4qnlJz36HKhOiEb7yLoToQa
uuwrjwUEDfGXL0vol9cs68nQ+Frob/Srp2vGY/D51htheWqJsTnFwdQaGxU+r/OHLtPP0eT6tnjC
afOo2EabhULUl+vx54eotCT3QKSVvAdVrydmz+KnELGRJtAW1ZJYH/kRTydpb8HtTO9sq6LWHMKq
D2HMHj6x3OHQjQpaU/CbTYdp+WryGuCYwThKF3rLn8IcJudzRNtWr9jGEPfgt9+B86RzOlblouk2
x0+BllM6I2QAXQxZWnFUKHfMyGYWiC+v1uDrT/C0iY7dr9/QNz+x0HVvaEyeegjHyzQn1mb1jP/0
aL5vSwxkCEyRuONZr8d5goUf34LxqusX9DnC/rufKvNuv9BC9JzNfLbadFuTH647qh8y7U2njReJ
sTp8IuCzS/XH+1n6iRM0kSGj3Te/jz8eeamhYvu4vzXCvrr1Xz5zutOlGavDbY9OIz4y47RfmlMl
LhY6RmVE1v7NjL/7gQvihfo/+6Q+LbMa4J3bBJNzHzOcGhTK1rSY0T7ezcSoZYHA25KZK7cW/Tm/
2ZDrOKezbrvKeQrpiDz2lokXnnjAHwez1n/7FpKmN3PaO7KMAme6E3eb3+Lxzj9HyO1swv13vogx
ohEslcuWbOuL09xSRI7w3d8SC/za5PjSqaDf+BJzA9FuCMjThvJ0AfLLI8osWhTwWUoTHr/7upGc
zucfvyQrj+8Rf+STD5fwFZL1Zp3Eo0jtQvueHzPiII7FfbJV9N7er8ygPY2pI9QMgpJWzPrOx8k1
excW20NCcHuJBHP8WfvjX8RcsHUwtnVqwJef0/br9378A15ofSLhj39fKlrBZNqErPmJdCNb+Xdw
5+YMo+d13g39Xr/8T37hJ9axuXS/LJX3J8fafLnqFOvmKtCZxzsz/LxrPtupTWAjHz3izR+vbqzf
Z1n/6hkdn5cajW3enMHz4htWs+Hx23/JsBlnByobWtVxtMpauKbcJ667fATjIjRUJDuPiNnvOkaj
NPc1SLP1la0WDjZHv+5rlOwqBSNnuAke6+VZg+SB/vqt11zFB73aXFkg077he9QA8FMq6P8BAAD/
/6Sdy46DwJKm9/0UrbNljsAYyKR33M3NpLkYbGk0AmxjwBgbyARS6ndv4TozmkWvZpZVKlOQl4j/
/yIS1xv/3nj1BRCj84PytDSAYi9kIG9cRbTpx+Gv3ukmCcaS1UigT8V2houa74iz6e2tfmwAzom+
RPsOSrzA1K2gZAktMVdk6pSDVIP/+HUF/Of/+H/oKNj99x0FuTm/MThotbcY3zgHlzw5kejyeYA2
Lo8nwBP3RRBUDgXP9IIG9DA0CJJwMUy1opayKPs35H9x4c2Fw2PosIyL2UXbxUsV9T08iCOLDpIq
gSWbbAYmfBsFrnlm9GlZyx6iydKJFshi8b2+Li0Ar9okwXKKhoUqIJWi76Agb1EQmF3uZMl8YEVE
99U3WHS4dtDTjCVY+Zc+0EMu9TDHrxKLRXaKp+HNdIBXjxpxbsWBjkcUYuDeHxZy7vynWFLfswGe
hRNJhvgFsMtWJ1nM1JIE++QD5klxElAIbBUw8fhoxjUSbXgM3RUFHUhjGmqEB3PXV8QUTr1On7eZ
AxJcRuTZnUixuHNT+LS9HTnOo+FNHZMm8BbGNp4GwMaTV0cnOXu+hIAm0dgMg5z48EwkjajVUfH6
LplyKD75EHPY+eiE7goDPiP4JUVYJfFnLsYT/GprgPSw/MT9+W5D+Oy/MzqQ8d705rOPoFSQK1JP
tzqep89FAFBacuSzYl5QYGi5KHOtRZxBFOlyERsBmirnkEt2YwB+vUQOfqRqJtqryYuZNEkPbRAd
iQ32CV2Up6hAZT3qSDUfp4KePk8J+rPxQOHgi/rKslUuP09FHMgauTXzied92Hi7D9H3zuqNwmd1
oZlVCDm8WenT12hOkN2NDZ5zlOnzyBxbYCZQIGZ1KRpsL+oXLMsbBntRaOl3kfUSJpwGkA8OuCGD
XAagPX/PCJE3HWbh/DhJRRPnmMsKsZjHh15CKKcLcmTjWswpJ6bwc73f8FzCNl7u1qMC4TA46ODr
U7HITpdCO+sb4hi2CNbMHyt4/5gcUauU98YIHC6Q2vvT33qn6Iw0eLfVJ4bjGg2z8Wg7cPZPF3SJ
k61D53rwYWjrD2Te6ktMfusnufSYaKdL4c3u+b2Cj1TPyM/9cJjfH/sEL41jBTwjTHRGzq2E37YQ
MYxabSD2SzGgNdKWbPNbECeqBJnD7wqZeNo35G76q7Q/S2zAXLq8WNvwDgEfGBGxdIGntMEthIwb
+cgZxCsY3a/2ZdvT8400TnkV80W/KLA0zhNyapaNidUYOTgUgR4Iw3ko5q/hCKCmCkesQ0boVNxX
CNtjvg/mcXfxFiUbOsBSx0eKtneLpc/cO5Bh0qNgvltgprxfQq0KFnRw2PNG0DQbjO/6jNvocxwG
5YJTOHW1TxS/mQGGHZfCVDpZCFnFQufifu3A927nKIZjPZBj4UWwP2cCQiJEdJ24pyHzdXjGvMDx
w0gHVoHMg4mIAXR9mC3h0oNXpV2R5wivgliEpICv4zPxr01BaXHrA3i8v3N8Ai6nz9/TyIMuXVfi
MhKN6Uc/1fKxDZ8k4IdEH04DexEFQ+KRsVsEr/9M1zskVOGJWgOuGIf3LYDxUzoTQxMJ7R3H5yV6
TbxgWNaimcMj/kLu9JFxz11Knab8rfw9P9L603sjYsQCRx0FAYNzVIzms4qgMwKBKL3uF8PtKV4g
nG9P4j5CFfDvx66FXyXYI0O4m/F88kIbVmnloljqPR0fTjoH3zwPgxqGX32+m4wtDUzQIju73eky
F2MEfbk54F2FzGZWJqkFlkfCgL1SZuif968Pw6N7JK55vut0vEeG3F6oQYxGU721u1UWxN2hCDBD
NTCI7GJDhRgxuZSZ2JAsKxKw8OMXbePnUb5ke+BbMyYmSyq6LGvyhV3wTJB+NS4xbpFzB/ldMZC2
z0gxt6fEly7Vm2BsGyewAjGuYJGJR2IkfKHPte8pQIJBgtRJtAp8/lxteJWfTgBzRi7mcucwcN/w
DXJ72S4WM+MCOIDPcRu/J51UFHLSdv8kCMK7PuFnX0liabvoUL1SuhTDWQDCTnYQulxkb5mLNoLg
0D3J4bmvC2pdGAbcOjlAxri/NXPNVprspscPUrv8GM+iK2ggU5pXQJ/nm7cmYE6h240tyZZ3pS+1
4tz/4r0nX5uid5h9ClyzD5HSrO8Yh40fgQLU+6AyolHHtSucYDukBdI6f/aWlWE7cG+uGGmPdKTL
AmtDqnaqhZTX0fEW/WAbsEnMA57lvRrTgQYrYG4XgEzwXr0xuxgYMrGpIXv3fQ+dkPg1eCW9j4ox
aHV6Ea421NbVRt6FnYpxD68JrMbgRFBYX+lSK+pdzhDjb/lHi3cfwT7BA4xScvBH3VvHuIngpdKy
gIXKId4T/ePC6sQbCBmPT0yninQAhswreH9DWR9d7mRAFMUIoau6gvmAVEua2LNKgkW0Y+4uxjZw
ghwSJXrb3kSkLhcpUUKicy2l6xgPEahD+CSH7XpYdxgI58R0kCpBnk4/PXGy76dAkMEYL0dz+oLn
bQ+QKQ+fYUkOIoSlkU0EqcpcLNr6smGflx3ZPg+6LR8BZJwHZMxHpZlbcZjFLT6i4wuv+tJMXx9u
egNdeVPR6TGoEhj2VY4cM38VOLHjBISnk4xFATTF9vcBDE72B8u7O6JdHom5dNg7PTqW3L5ZcQbv
4Mh+JqRZIzfMb3b+gm/HnjAz3y1KRmcfSIdj9MDV6/jx5vl1SeDUwF0wf1JWnyb+5gsA+B7JqPYc
8DnqZ3Gv+GIweZXmrf1zOUHz2zPI4x49+LSFrshRVoVI+fZus/jte4WV3XXE5T/BMN7G2ZeesxQQ
RQ6GYYWLukIB+QTpdh2Atbv1FrBihhDHzM1iPybGF+78xkABQzU6pt5nhb0g10Qt4lfxaU9bHadf
LOKpc9qQj36poJenATJx+xzo+zvmcHxXZ+IuwdGj4q4Z5V8+MGM+BOvz/KggO7925KDiUO+l47GG
eVFOZIv38foq2ot06lg/GMEBD3/6plqEjDjD3ND1W+wU0PK4D97LnHprF0e9PJa2Ta5mUxTL2UUl
kGHa41fBKA0/qYYBn7MQEOWTPrye4U6+LFp3AwX2ZA17mK8zdAuRII05RsM82oUBI38qkbftp7nV
xQhEIe9hYfc9NDttnWzYkfcbnyfg0TV5n+9QZm8Z8Z6nVac4tROocucPOiqqEy+9v1OgqzwbhOSi
pwt3vJ8g+wUYP3fPc4zfX0+DwNRdZMPKBVt+84GVVtZWkavi9SbYOXw/bZ64ulTGc2drd+gWaYYb
t7M87tP4Gnx9xS/Z9PMWf4wIvnbjg7jC1HnU3cEAKlYGkNq0X33Z4cQC72Y8osdeEIrRYdgEZM+3
EMw3fNLH+8nr4P5yTwP4xcBbd+YkAfabpkiR9894Hh/eHe6hpRB7YFR9PnauJdZU44jrXXfxtMZ5
DR/WXQmkAAkDdpKzAm9sMOC1808eVS5dCh8hdwzaoum99RL0gVRoxwPRQajQXSDHPDyywxQw5r6J
1w8uA2gcXY+gT97Fq6m+AnBn/Bo5s2pTqkyOD7wupPjzGsdh8i4+B2nwTIkWfq1hbwPhDuF1OhDn
fqQNxZcbB88q8yAB0U19MjMYAJtISrC7zP4w+rjggcqLCvnT55tehKM0GEQFL3/gmsnmYamvZ4zF
5z5eP621wnHOPLzPasvjDhK2Aftonpi5CiZYJldwYfT9KKQsr6xHVJKOUrJ3vpjpnG+zUIX+6Ruk
8nSj8aPQwmV5QWKdJKXgisR34aieE3Kc9SCmlK0qORGJin77cdr0nAS6ww1/L21C5zHhNci+UE+Q
2yjDqid+/htvFD22Di9cq5uf4J1gBHMbL573EYTK0hFyr3xVzJ2bMXCLX8T0M1H/5vYAgWx2iNgg
eHhbflSgcSRNII3ls5jsuTrJm14gil4p3vp8tAwcTrGKgqtg0p71lF7O27BBRsP5YNnyNdSm4Uq8
16UCn+kjRWBsGQYpIbPGtAUHAQpa9sCM+NwXq0yzCAaFLiFT5h4D7p9LBOZVmwLYkCeYr7OwQrVn
S2IeV2mg+ZpIkAZNGuxRnhXT/FowdHVDQqpeXOg6m7cIrDv8RJ7UVN7cyRDChXNiouepTrmGpAl8
Dv4B73u+GJa7yFXw7rZCwAfH2FtzaEMYJYyElBztdZwAIYWOYepBewx8fXm9TncZOeWVFI5gxnul
BjOM+sMn2J3DeFiVOrrA05pdicOkBt2VfryCO5U+xB1LNf48lu8K4yD6EhdfHDAfO82SR+ljIL+x
Rn3cCbYLA2MuyRm36kBZf1z/nnc+34aY5LBOZEFdD1iuYBfPBp9AKKrnFB2PExloyXcWLDJwxHN8
pfTn1+XqbdbEiKOm+E4800ntkBQoy4ZSHxpByn96hah6VANaKrSFqnuvMIT1HK/RFGLZf4Vfcowe
oBjjkOXBfGJyzH2/J2/LRzPcFy8TOfbJHrhreRMEFRsu0b/Ws1n2B8WHrBPpWMb92EzB4ZnI5cN+
ksgauWZNd9ACWzxB3pdqBeeeyQwK5tMR7RqdhymQCw44tfLGXDKZHk1dIYfzvdDwUqW8Pn8NVYA8
sV/ERjsCpvP9m8Kvfu7wWuwpWB43JMHz5Sij33qkPz2M1tlFh/HMDfMWD4UIRTQQz66u//wJvH3q
15+eHDc/Dxyrz5HJ77piAejbQT7JFqJ6o9yQve0y8KPPGTq0BgIbP0ngz08ed3dC1+OpLKGoSxNy
PxZTLO9HGUCxnOqAaY+avnyaKYebPiXOS0/B+uZO5U8PY0lpomJeI9GFhBWsbf9ExVIx5gh5jh+J
eXq86YivyIfZABYsG/SsL6J3vQAOazaee32MqegnrvxdZpMk2qHVJ+rZMxhL1w7WB6sNvNYNHaz9
U07ivbPq69BnEPrf/IIOENs6d8E7Cz75LsFf8RECmqzGCSgdz//55Q2MChAevJmYwvWuj5OiJnJ4
iuSAv9SoGOmwV8DGi4g57LmC4Ho4SR7TnLCEnq23pGzlSr/4LnXiidJO1jtQzv6OuPag6vxOv1zE
LX4QlXcHvVeuDyzt43NPTDtoPFrE+Qo2nkNczjgV+Mc/Nn1HXJOhYNqvrxPY/HqwjUdBL1LXS5fb
nUXBs+LoOnexBbfxCnZn6RPT9V5joF/rZ8CHOl/Q/nL0wS5Za7ytD2/NpjqBjXcK8X7Tb8tppxnw
qB8DpGINxmNYOxX46fd+py6AXMPMkGg6cyhO91/aWZdbB5o9XpB7Y9N402cGbDkvxP04Hz0aGU0F
N39Kji8TxmPt6wqUV40Qk6bHYv/z58v5m/3pqa+Y2j68GscrZjd9vtqL8wWOdDLQbdO/2BKLHJa5
ToMdc9vFi3O4jD8eFnAjfg8zcs53wW6UmQTnee/NxIjqH9/Ch4t8oCvdH3zYJccC+SHwwXyqjpxk
KBHAa8cAsDwTxgVSA/fIjI3OIyIr2tBabwPSFzMH3WP1XVhKFQ7W93tpqJBMwm9/oUPQDw3tHNzC
pTsS5GYO1UdXAQb45UftBrx4z79NCzY7L0e61HveTkVXToKGqgbDxuOoqAWj9NPPrPH4FF8UnVw5
bTuFHDzAxKSTvQ4e0sOZHH2g0z2rPRLwEvYBlr/Vja7CPWTgcNEb3G9+60u9rw17UInIuShWsW8E
6QKdDK3InKLUW2QHp/AaPCOiL3getnys/PgfsSqXiafH8p3BNp/El71OX37x6NriJHhdDjxYxY3g
f94XFaWv1wNQLr0w8LNnr3g907KZtueD7v1mBRSEFV1fxXiRbJW5bdezdBIHMwOeOOGRcyvetP3x
vPkEc2KF46ivwzrlgL/eHygIbNubHcfgoPaW4+D93Nfx9HpPDNzHWY/ZdpkHfH7oGD6cbvMHTRHT
lD/f4bvBR0x3x8+wBrIcQO81Fkh/LK+C+tIxh8pHfhH0BMcYv7nTHczdt0JGMpl6P4DZACdTEJFz
hhjQvEcllCw9xnDT+3i8CRhufID40XRp/vzKxm833urosziir2RQ6UWCjbfwBLccZB4wwoBl1GEf
am9ekDShRRezr4fxteQaBIA2W746FeAz9gZsxrTd8r/icaI7K3JMEpn4Wz6j/KkcQbzTDaJnH74h
qVIzEEUhIta9s4Z9i2oeRlkdEnUmTrPshGctqccXItriavrschcLTvpDQoeDsw64DVNG1FPZxRfN
cRr6vAkcFG5ujLnjXqU7H+98yN4ZZ+NFY0Gf3Cf45S9kdfuhWG+Z1kH/e7ls+XTW1/WuJnCC9Bss
ww7TWXtV3M/foEJ9KwOt1qkCwVDtkDGUgNKzDUcYp7W96csKkNY853AXHb2NH0vFeEUShKzhnTE9
0XhY4FVQYGCeuQC8LhWdI0GUYAWXHvlvYQ9mUak7SModR5S6KsCUy7IFKzZliVYEjLcAYbWh7ugd
ZgouiOdD0SrwLeYxUZXJaOhB5Fb4ka0Dsn88jYwC/sVHLOkSjOeOkhrAMrpv/uKp75zDBcMLyBuy
FfrjHt2EBCaV5AeQ9udhYWIwAyjRnCD10+k09OUIOtfFIQfVBMW6w7sSalF4DMjGxybYRYw0fXqA
LPzICyo1fg0CxvBRAANj4HfmJMCOKAhdkJ/rk8H1PPwuq4nQM8qa2V6TC9QmQyVZO5nNd4ArJzf7
cfnTCx/5cOIg8aMS75d35S2tkfdQqEIdN9cJ62uvgDuQ9ocuAPnWK/bmJwh2DjsR/+Xqgzi/RAzP
u9ZBm57Wd8tafn/xKdil+qP45XMAWcEmd516dLetP5ns2iMpPs+t9zpMOxj0uYU8VEI67pmOh7MX
xUR7sPWw/Oobwo51ArrFp+EaZhZE32rEDNnNlISZhuHOfxrEnG0xXrF3reA2PvgXn8ctH0iXxrPQ
IUlWj9Ze+IUy+8iC1T7wBV6rlIfk6ysoOe6fv/hvbx3j2s+vgR//goeBFkHNHNeh5YuiAmmQM8iJ
iRrvclk2pHDJTkTDt4RSIXlJsLi9Y+KxZ4/ylQ07ENxeIXEJHeI5nnsX2jmNfvwZUC2vNXi9ggfm
pHyi6yEPT8DOlyhIs7kplrvhapLKfGossc3Hm7yLwUHiTCYmV3Wr2K7JLP/qKfqadfEfb30fGy/4
xZ8VRRcXnsEJITf+5h6VGcuCQ95JxAsrLqavlbchO2u3reM2jqf4pI+/9Ur89nmk8xFdR9DpvY68
1joX9NcRYPs7HJy3+sMa51INeRVp5HhmkniWsJcCmwjKH3/Zl56jwPdds4jSOOGwItsdJcubQuIG
Vt2MnM8JAJ9rnRyiQzuQnNnz0M6+DdIuHxbMH4IZGE2UbLyv8T6PXLpAjZ6rYB/eA7q+uUsJpK4O
cJEc1WHc6gnw87AbcgzSV7HOV8GF3/YqEqevEaVLx93hMog7ghzpSymXnhgo3OyYHLZ6EGbcAwYt
frh4vuHZGz/TtYS//HSkuRDj4O3zcDn3Gbl5Va2P5T4rgSVNNrGfK9A/+FnV0s+/WuyzadaJ+1hw
/lAUyLOO4xm+xBYGTXwhB+f49Zaff9r4OVLctImnk/qyIHwdEmLUVy+mdDj2MFzOJ8y6TTVMidxu
+UeN8Z67NQVhFYcHeAgcZO4aCaysumN+POhXj9VXdzhewMlR+y2+R8M6qb4FQuxXxJXs97Ca+2yE
O0eegnlHooH89FoVXkt0yGpL59zHzoevgDGJmY9njx6sxwrYx/MZfPHlQ0dFUBS41UeRKVwZnRSP
3QiVz+VI/F6xQHt2OgsGblmj28SmdCWCdAIX4+vifdB7DS592QUeuDzR0atqb72QPQ8HQ+KIv9P3
MR467Q6ig5qiAwqfxV89+ZeflcZZGizT7ATX9ywT+6c30aO8Q888Vmirt9GluG/54r2yGGZsq89H
iV8h+QbKpt/CZt7yLeCwYhM/Y1tver0uJbhoFiWBbcyUmH6pwW19EY3H15+/amGdfd/B0rIDWLis
GeVRXijShDX0RnE89GDj4xgL1o7+6luw2ukWplfjUkzbfv7Vi1FGNXVYNn0EeiF3iZccnw3mc2WF
tR/luOk5Xp/j8hjB6n4akeE+7z//2wIh72Cww1M20OPrhKEH8uemr8uYWFPI/fQ6lsZSLXjP905g
83NY2vgqBwywwh8fUyexK9brGxtAdcuKIOn1ajA/izbc+Cc57L19M9eq3MEiGjWSWq9W3/xMC7d6
IObZpz7g52fN5f+PjgL+v+8o6AMXk8OuNz2+fLAukGl7IHci2oC+cGHATvMM4sPSA/sic1wos2hP
3JDdNzQJzjOU360dvDxvBmNxdBh47iQVz++spTRnyhHw5O0FSxpeh1X/2jlUrmWHzJs30ckBXwu0
dnonttc/wfSp5xHqcagRu67zgryZiIcAdBdkIDzq+GhPPERYkHDf1uLWExszUHy0Kzq0/bsgj3sM
Qb42CrEa89EslvetwHi3LfwkYaoPQeZpIDhbJ3TMy0NB70xpge1+SBp6XUEcIiRwvi0nZH/NoVhL
YahBwhE1uE6m6lF8D2d4XKwEOUUdghElWQRfmhMQo/T2DVnMdgWVkhnIrLxjszy+JoYP4WyhIBCn
YZw8HEnUe014UTOl4a8s28JjCkL8nnqroPe90suubM3EM1gCVvsZ24Ag2AaSUvseDvqph7KYs0T5
clExB+f5LlVR7SDT8MJ4YSTHgGhnqKgA7BvQ/bmR4LIs+nYmzAPkhpME2lkUItdhL2AJh2qG2rWM
AiiLIl2v/WhJShMXxHmz94LcDsoK7a/IYrE1a29dL9UJeDdjwOK5Xptx8roTqNpMQYehtwB9MbEL
smTsUab1Pl3z5yWVheNq4qXlPt4EJecCVPX+IEbsicN3ED4pnF5bBwYpM0r2waWEqfXE5MiVjT5f
jDMDgn5iiLHzEm9gSv4Cr1GDAqmvTcp/+mcr3751i4wrdgtyu5cRfLoeRV7J+t56WS4YdLXLEj8v
l2IZl8cJ2E/TQrob9h6ttzPk3YGFAXBYTKehni8w989MwJd91ExZDWpp2jNLMN7YuljkJZnhOrzX
YBrLtsDi3ook/rPGeLlx34bS81gDcCyuwdKFmT6KRVvC67fxkftgz8OMZH2ETzuF6HDsvZiK56aD
ZwELxF9FUMz18IbwfG92CPHp6K3Okgvwc7db4kw1pqu35C2UdxcGyydx7xH5XDPwAseCZJ4pxmMn
Kyd5H84+CvdhAujtnpxgkj5lZJpeOCwv14BQv90dosWcFvMd2fVwj95WsD5CPKwiWjGLcokhRo/f
wzo+YA/rOR2CshZlOhs3swRfxj6jw6EfwKovMQ8uwpgTrQ2PdO2JnIKtYh2wQzoNMymwBtgCvZH/
Yp8eNQ9GBQINeOjw7btm+N7zCwC7IsL8ziyHKV8lCPwvyAJmqxBSCz9W2EkuDMZvicHkDR8MD1lU
BLzu9fqkajwHP7X9RKddeC9wKrR3aKiligrIvvUZHXVOnvZwIYGW3obZP88zjGfikmMnxmCFRPJh
DdMPQld6b9b40jIASZJIVModipYmVwYaw2mHect7U6plhgRiSQqRvTc/+nIYvikc3rJJDtjk9BG2
lxLAdxcFu2283x6ZNTnnsj0eBvYbrw+W+cJyrUcsfOurvr7RrpYA217RYTFjOpW5FUHkGAeiTpyt
r9llTECXOgrylLr25snrIrD7rDcMl/IYL7HX96BosULcN5sU6/3BcOCS4DtxOXYt1omFd/Gbu1ek
R6EFVoaIAlSv9xLZ517xFkFyNThYdhyIR7PTf+sDWFn0Qm5Qf3Vav4gFP4z7IKbgfeggMidFlt9I
CkS5Hv/WG7S9KCLaGPrNZIJ6lJ2PxfzF79UKi4tUuJUc7C5eAJY6PybwwVeI3BURNTTDt0g6hsYV
xcfwDWj1tiMwTFTGyRv38SqwkvTLL8jR6nO8fi+fGmpx6Af7q7kfKDlPNsispv2LT4ux8heIcoEh
ZuNN+uyeRUMsSqwFLcYWoOpjqWC1Ojw5XsQdoOeDq0n2yzxg8RfvhN2AwdpAnQSV6A77rUMCCKiF
ZMsH8ZKutIUVX5nI+vRzMR53QgtvQf1F6o37DvN3wBgcVPNMtCxEYLlK1gjHaaHIOvQ7Or8mpZZp
/B6wUNdSMZRvRZKtfVQhk/e+xXx4iXcw3O0Tuesi0Rf4VVP5WuF4O+NaN/Rt4gQAva2QBrDQ4F88
EJ1iDOAoQg8/+saG+33HBvSId8Nq5rYGlee9RRrFIqU0uBrSEr9Z5Cfl6tHDwfehJt6P+LkPEzqf
uMwAOnsCgTyLkbcW6sUH8NElSEvwXR8XLrKk1vXOCLWi0uxPmYsFlkUN8hL2WLQX2S3hs0wEcjXM
t742/bf+mz8j8QS6cJLWQ4KYdhsfApahnnOoDxEb/PbXakiKC1+8YyL9FRo62eIpfNlJggJFRAO1
WeECd8taIN8qKZhl45RA62qW6OiK+2Z1w2iGmlgeicqGcbN8JN+HxuEkooAVu3g9qlEOruWYkmAv
vn/r7wT2+5ZFyeDtAA6XsIfPvFaRs63vZe+6rnRP6zvSjbCnQ8TcINzt5jKQVDb3iPv2RqlKaxcL
tBY8vHuAHOqPUEHOwpbN7O0ECTLni4i8RynF9HmwbeibVouUS9Y1NLuffeigyAmsxVOL8XlTDWi+
zFdQZdk7Jtt+gNKnuGHq4jNYkqLPYdiTKhhq1isWvNwhiMfpiBBLL2A6FR8NRp30+BvviVPvNkjG
SSd6irlhCfMDBz3TwESROEKxlFkuzC/YI4eLmRVrI9QdeGOXIjdjeYDtvmthBVMZ96vpeiPazaff
esN70Lcx3uIZWAFUSLzdH7m/3hi+WflLrIdnFPSJCwy/mlsG64qvw+/6sH+zDdHE8FvQKy6h5K7g
gwXWPACM7Z6HyV06Bss2f9RgFwUmneQRW+trMOuv1YDeYvTEb9jnQC/BzZYCLBpEIVkz4KP94mTp
c70hRGhRYNJXvXxA0S2gEz4Ni1o0gdw9WBHvp76LR4ELXZgp40hMxvt4lJYslD652wTzKXvTRXad
AHa5owa7bX+uO0QT+bFWASl/62+bL6DSMEQW8Z6Upm+Vg6E/dWjTLx4tg7KCmDIdOnimWCyxV/Xw
UWUOQiD1dHy+jD0cJNtFx7VsmlkuGg6eO0FFNqh5ui6IQnAVxtOWbz26vF3jK216jahKVsVLmx81
qA5xHHDUS5r1g+Tgl39JYKSyvuyeZwj1d8SQw8m8DHPW3i0xYSQ7EESzHz46GBRArvSK+bDnvPHJ
JR3km/eRBKk4/uVfcLaeAo457waWLhIjOHR2QIza48G3YRkNbM+Lg0780Ckc+hW2qZMQJc3eOqXl
nhHlY2Eiffv8bJwlBeRdoyIzwxX4SOotgORFLwE0WBNwsD3d4euURgHMy7BYxOWcQ+9lfIjXsF6z
7t9WBbVneSL2WF+a1e5xB3S19FBgiRiMDGh6eKzBKdjx/cVbTI33gf08WIF0rfth/s13lJA8WFOu
1pf5q/swZyoGWR+vbhYoqTn85Teah6+GypCv4eq991gkrKwTWrIM8FbwwHvamw297+0eVkHtk2NU
2sMi5qoAPMciRF25g87bPW5/+gozleg2Y5/EFdTMe0pcXJsevWU2BxXx/sTPPuSbNVSvK9TU8kzy
kM2GPSx5DP2d9cAwZg19l2vUAs4qUiy9a2vg/JvvQ+zBidhDLRZUfRuMfMoFjlws81TMhrlAWIxn
8pcP19auc7kcsxdyFzYa8GEpApDY5IB54qmAm8GLh1y4fjFcxSJes/AkyJs+RgaPzYG6mf4F2/WR
W7KpN3Fh6sPEkk7EUvu0GdmiqeE3ZuOf3qD7cO9W0LyZbwwrttbnMEnhnz+IV+9eUOegC+Bb2xnx
9+XYTEbNpIDzXg3RZzwXa6aeOAinq0sUi8uKEXKnSm4i54aQJRp07S5fF6YJXpGfiA9A9cfiy7+K
yc9/4lP/SmHJVxNxQckW2HDtExhYWUPGBx/Awrq2AEePVYOBY/tilZFkgJ8eSxR8BLOcnHJ4rsat
w85zCjoGuQaD0ELE5szPQKsXyeErddwAvlhVn2/t2YWJP9m/+D+MlZGM0Hodiu3NE+n2DhQ3gUcs
BkSrOCXeO2ROZBNFSwDb7UwrbvP+b7+JD/bRDAPOXen9ZieEzulM+z4pangtcYqcg9kNUyMdXVi3
yUjKlNXpbl3SBDYwfQS80qfFcq1BAH7zc+jMc7xeHvsVHo9GGVyI+S3mKklWaNBoEwemUizJUN3l
LZ6jlPeUYtq7mgtL//wlbl+/6NcXOgUugHG3/foCZPP/chd4GuZ4/Gro+JoqULfpiJQg64vZlM0I
RpbQIjuvQbOWz4sGK9eR//IvyffqCWz6EWlr6AEyMFEAH23m/uWrCaqJAF9JGgd7qW83P3hjICja
G1H5kBvINXPucF1WEYu7+tj8/DO8ME2Eed6rCiywkiA+y1QIdhlW6Hg3bgpAZ8siZtbLBXma7xNM
LOFEtopQs8WLAGpx7OP92pvF3/5jD8cBmb03FjPjDTOQjkWz7aejPr8nJYCSU9REy7Ecj8eXUMHL
vcnIoTcTup6EKQfyo3ODoEkFQDe/JtPbuiL3U1t6LxcDBzc9j1QlU4q9cD8FwLkZLDk8TT5ewHI2
YJRLFQmitPCoix+uVOH6gOytgrVKrNTBBcETUVou3vRSW8O4J37Ayul3IPNrFICfigXSPK5pqI2E
Cg6dG/z047CwucLIdyO7Bvtb34NpWgUXJgmxiPMy62IOuOzy07dE24cuWM+X8Qu8VXwE/MnrvL/4
or1jG1c5l9BlXu490F5lGNDVY+LxeXOMv/jqjyLUl2Gd73KckBPxc/GhUyMzOumnXwKzVAB/UONU
dm/WjhhP7Oj8/cHwQJfvBlKuHNfQONNyQOTlTFy+1sHYTDYHfv4BRWLTjA1XniAfrilRJc6ky1M6
lsD5GAzyYhZ77ZxEkXTITgXxSTnRwQwyCL+dfcEUhoq3dF9/BbtwrjD7oDe68lkwA9OL5mD/MXf6
kklIAap8vxDlkxkxNR+CAMYz5bG88aTFGb6aEHbCh/z06hbvmN9+xIsXFh41H7ME2q93CtiF5mB2
ZP8LOmzL6PThVn3JXauGt6D64v2hHyjN904EzvfnjvhS6cd9nZR3wMSdhncqbr0FRRADfXfgiIU8
C+w+khFI97W+BGsUnsDqC1iTAk30UJOEXTHjJO/gtR0TVCpl0tAdZGfpHlQVOk+eF298YwU3JauD
+cFtZ65q9gTcl0GJt/ERcgiyHqLFUrDciJxHC1x+oaufVGLM2Iqp/fYVKD+vGq6VMNr0whLB4844
o0tmYn3l+l6R0vrZI/tjejpnTMcKqK97gY638u2toRqucHden5jG4dtb6wfjg59/K03W0gkLGR9u
PCHY+NkwcOZ4B+V4fgVMKE7FmoUXSdr8RyCEJgb0QOYeolqAyFnNSv/T4yRjavzyvBOlKlpKebfM
BUJvsdLHR1tycNMrwfmAm3jw314uHbyoDOownBvKlEwOh9xFwcvsHwV9mO9W2PQlCT6iMyxB8Uwg
DK8+8sNyjV+qxvBw/7kConc48nCmXngohsV34y/15idBC1fEWMg3WJNiGa0WHC3XQQaLjYEuzDWC
P3/xp9+LWhLgA1chOhj9WKztpb7DsJZ6cmj63luNMB6lje9gfvGe8XL2+gTW2Hvhne5FOqe+pBwK
zmogx6u5YjqDKoAp03QoMMqqmY7RTgObH8NyLPLN2B3tC2TY44Slmt0VGKmRBYWw4Ai6pHOzDv0n
AiEjdOgUcjuAR8JhKIG2JhoJR32FrBTB59fDAd702Ty2OYTnC5YDrvZSMD/ahIfvB0uIduJqijf+
BMGjvZNgSvdeMwfhBTztBCL0oaXX7oywgyY5jbgtvf1Axntugc+BvQef0VQo8YiggY1nIFs0+4Ye
9r4BL3mT4tbG/jDvjLCVg3mCxI/Z1tv4SgpB0xak3PTDdFlBBLn960YUObzpP30NujG1iAq47Yw0
Wi+QyusUiHp9HvYuEnz4ye0GhRE3en/+/9w9KXHmOhhAljnzj58hZc/N3mybS/KrIAbzl1vj5RNm
K1xe1Aj2Ru/HFECGBzkcDyTQS7XYFd8gFZzFgnjL5/FKhcqAzdfJibrx49V9Rhx0nIOODrDX/8UX
+WUNAx71STOzxkX5/YyFsgbeuE/CRHQWAxK/Y9WC2yfX9M/PTUcxK1aurxS4vBYDC7k5gdE7+ndg
mwc/WLlwiOcxiQS4X+YDCudwF2O8P/A/ff7jgfQXL6B86I7oqIkCxVzfaxDZk4gCrXx6s3k8XsSk
J1ogGDVDf/4IWCSq8fdev5tFkhwM98tWQdyzAAyX4OzCdBxJwO9MOGBXwCk8W4KFmUA8Dos6NCcQ
SEAnfivKMU6EdobXaoyJkWGXct7RuEN4vCIs7E1HJ2bwYLYzzlwg+PWtmb9tEUlOc7JI4ZUl5ccH
94WaFwfb+FbNOgkfBXZcYpCD1LfeOA+vGaKPoZFQ5l4N3sYfiEvx2vT+21sNyXahdOgGhHbp9g5O
4YXF5+qMaFtP3lxO6gwCDIyg3+odq6MWCuTPc4Yucs0XH0eTW2njAcgLSxjP0GsNqJzvLxL0olPM
D64UII1fA9K58FlgwkIb/OZX9M0XmLSa6X9+m3g+GzQ8yRAGpXBuiVOYhvfjT5Bh0USQm64Fz2fB
CrnsVQfrnVPorsqPXzDU9hGpkHsVdDCnEV4hDrFk1V6848ObBGJLyn8nOAqq730Md+f5iUMc7ujY
cEkEF3NxtvhwGuaAe1zgJNIeS/u69bb5S/54SbfVZ+ZqUl24AOgSLQlPMRXKfQJV8Z4RnYaaN4nL
LYfZ/flEZojVgY+EyZB+PE6nYe3hIrxE0F6BvPlnfdjj3XQCoyeryHh56UBtnN3h+lkBZi2xBStz
ON5FgXR7pN5DIV6/RNZgbacrCTrRAevtMuQQ75k3sUXTbvjT8ypB/XgAwSJxLzq7k99BZrrwSNW4
YOM7swCcCAiYddMopnvI3oH+PjHB4NSqt8+ZBMObW3+weDObYT4mWQt7xv4gX2O7YlrVewm39UCM
FLtN+fLeNSQUlhvP5WJ6O9grdF0w413qkWJuPMKBxkjfxNp42XIEzxLqcmmgw7l3N57Q9nDO4IUk
Z+/qTacVVrDDrozXTe9RFKT5j49ioTSnYgxlL//zC4sXAq9X5aPw89PkLHs94F43pYQphye86T19
qPfKtp+JiJk6vTTzkys7kCl4JFrBPb2+H94a/PF9T2bfxfJyfQZufJP8+PPOqhkFmtmJBGxGH/q6
3wedGHXCI1hHLBVtfPNOUGxaQrQz9wQbT+FhkZxXYjRepuP1UkUQIwYTY49flHrBQ/vx+WBvmyJ9
HoZvAl9jciKW1GN9rRHjgmfkLRs/29Hprkl3GN6lgXjvUtT7582xIHNodeTEdaxj9rFwgHl0CtJW
LDbz2ubar74YfG71Ei9nUPlwDVeGHMq+H2iGzxGMLSFH4cD1A6mZ4g5DbnoEbCLq+sYbbHnKGB6v
Uvgdhste7YCjnzxkPnroje5ZtADjtUbAIex7u2qVNLgUEGFm45Uz5C4VdPaRhtQlPA/jyZwt2Nhp
TxBIB++np+DLT85I98PDQLyD3sHHtzohfQy1ZjW/9r/ih/cpLw3ZBacZ3viqIdo1JMW631stTKtx
wV+HvVDa3QsF6JPJI30I9YJWr3f+8/fITdgs/ulFgE7THn9udViM9lnMweYnkepzI+0OapFC8qQZ
UY/cpOOC3Z9Ay6UXdIQpE48Md/EhPBdHhB6iWnx+fHzjQZhrvbRYdrlWy3e+uqJ8ro1m/+Ol2/wj
y/YOBeV3oyJ9GPuBZVo2lERv9w4eax0QlQlpQQYm96EjWxLRZHzxZsEb8S+/EuvRR954Ogs2TNJG
Rt7m95dd7lbywTykCIn02rTRpCewLZMc11L4bZZpFWzYRl4c7E0z9zbeysCbkOUBY4tBTKugEOAi
UxUzvfgpiJ/pKeT3bwe3Gf7SsT1u76yIqjdRN76+pkJbQqUJC6RpXNusbt9Ff3xpJ/T7Bh/UIgG/
evD+1tuAs00x+flDDMxSHhbmq2qyqLccQl4aDTR6a3dYGKNJdC38FLgUmhrsPwXAYMf2zVK6QQB/
9YRi42e8mts93PgGnq+ZBVaSHfD/fkfBv/37v//P37cgdP3t/toaA6b7Mv3z/7QK/DO/5f/kOP6f
hP/7tgQ85tX9H//xryaEf3yGvvtM/2vq2/t7/Md//Pv+r9vgH1M/5a//69f/tv2v//y3/wIAAP//
AwC5CQjfhWEAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693c3fe087743-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:55 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '110'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '59'
x-ratelimit-reset-requests:
- 1s
x-request-id:
- da07a850f69de94f01587228396b9036
status:
code: 200
message: OK
version: 1

View File

@@ -17,6 +17,7 @@ services:
QUERY_DEFAULTS_LIMIT: 25
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
DEFAULT_VECTORIZER_MODULE: 'none'
ENABLE_MODULES: ''
DEFAULT_VECTORIZER_MODULE: 'text2vec-openai'
ENABLE_MODULES: 'text2vec-openai'
OPENAI_APIKEY: '${OPENAI_API_KEY}'
CLUSTER_HOSTNAME: 'node1'

View File

@@ -1,5 +1,6 @@
"""Test Weaviate functionality."""
import logging
import os
from typing import Generator, Union
import pytest
@@ -18,6 +19,11 @@ docker compose -f weaviate.yml up
class TestWeaviate:
@classmethod
def setup_class(cls) -> None:
if not os.getenv("OPENAI_API_KEY"):
raise ValueError("OPENAI_API_KEY environment variable is not set")
@pytest.fixture(scope="class", autouse=True)
def weaviate_url(self) -> Union[str, Generator[str, None, None]]:
"""Return the weaviate url."""
@@ -28,24 +34,57 @@ class TestWeaviate:
client = Client(url)
client.schema.delete_all()
def test_similarity_search_without_metadata(self, weaviate_url: str) -> None:
@pytest.mark.vcr(ignore_localhost=True)
def test_similarity_search_without_metadata(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search without metadata."""
texts = ["foo", "bar", "baz"]
docsearch = Weaviate.from_texts(
texts,
OpenAIEmbeddings(),
embedding_openai,
weaviate_url=weaviate_url,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_similarity_search_with_metadata(self, weaviate_url: str) -> None:
@pytest.mark.vcr(ignore_localhost=True)
def test_similarity_search_with_metadata(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search with metadata."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, OpenAIEmbeddings(), metadatas=metadatas, weaviate_url=weaviate_url
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.vcr(ignore_localhost=True)
def test_max_marginal_relevance_search(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
# if lambda=1 the algorithm should be equivalent to standard ranking
standard_ranking = docsearch.similarity_search("foo", k=2)
output = docsearch.max_marginal_relevance_search(
"foo", k=2, fetch_k=3, lambda_mult=1.0
)
assert output == standard_ranking
# if lambda=0 the algorithm should favour maximal diversity
output = docsearch.max_marginal_relevance_search(
"foo", k=2, fetch_k=3, lambda_mult=0.0
)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]