mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-30 18:33:40 +00:00
langchain: qa_chain
fix (#21279)
Issue: `load_qa_chain` is placed in the __init__.py file. As a result, it is not listed in the API Reference docs. BTW `load_qa_chain` is heavily presented in the doc examples, but is missed in API Ref. Change: moved code from init.py into a new file. Related: #21266
This commit is contained in:
parent
7ecf9996f1
commit
8c13e8a79b
@ -1,251 +1,6 @@
|
||||
"""Load question answering chains."""
|
||||
from typing import Any, Mapping, Optional, Protocol
|
||||
from langchain.chains.question_answering.chain import LoadingCallable, load_qa_chain
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackManager, Callbacks
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.prompts import BasePromptTemplate
|
||||
|
||||
from langchain.chains import ReduceDocumentsChain
|
||||
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
|
||||
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
|
||||
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
|
||||
from langchain.chains.combine_documents.refine import RefineDocumentsChain
|
||||
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.question_answering import (
|
||||
map_reduce_prompt,
|
||||
refine_prompts,
|
||||
stuff_prompt,
|
||||
)
|
||||
from langchain.chains.question_answering.map_rerank_prompt import (
|
||||
PROMPT as MAP_RERANK_PROMPT,
|
||||
)
|
||||
|
||||
|
||||
class LoadingCallable(Protocol):
|
||||
"""Interface for loading the combine documents chain."""
|
||||
|
||||
def __call__(
|
||||
self, llm: BaseLanguageModel, **kwargs: Any
|
||||
) -> BaseCombineDocumentsChain:
|
||||
"""Callable to load the combine documents chain."""
|
||||
|
||||
|
||||
def _load_map_rerank_chain(
|
||||
llm: BaseLanguageModel,
|
||||
prompt: BasePromptTemplate = MAP_RERANK_PROMPT,
|
||||
verbose: bool = False,
|
||||
document_variable_name: str = "context",
|
||||
rank_key: str = "score",
|
||||
answer_key: str = "answer",
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> MapRerankDocumentsChain:
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
verbose=verbose,
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
return MapRerankDocumentsChain(
|
||||
llm_chain=llm_chain,
|
||||
rank_key=rank_key,
|
||||
answer_key=answer_key,
|
||||
document_variable_name=document_variable_name,
|
||||
verbose=verbose,
|
||||
callback_manager=callback_manager,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_stuff_chain(
|
||||
llm: BaseLanguageModel,
|
||||
prompt: Optional[BasePromptTemplate] = None,
|
||||
document_variable_name: str = "context",
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> StuffDocumentsChain:
|
||||
_prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
# TODO: document prompt
|
||||
return StuffDocumentsChain(
|
||||
llm_chain=llm_chain,
|
||||
document_variable_name=document_variable_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_map_reduce_chain(
|
||||
llm: BaseLanguageModel,
|
||||
question_prompt: Optional[BasePromptTemplate] = None,
|
||||
combine_prompt: Optional[BasePromptTemplate] = None,
|
||||
combine_document_variable_name: str = "summaries",
|
||||
map_reduce_document_variable_name: str = "context",
|
||||
collapse_prompt: Optional[BasePromptTemplate] = None,
|
||||
reduce_llm: Optional[BaseLanguageModel] = None,
|
||||
collapse_llm: Optional[BaseLanguageModel] = None,
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
token_max: int = 3000,
|
||||
**kwargs: Any,
|
||||
) -> MapReduceDocumentsChain:
|
||||
_question_prompt = (
|
||||
question_prompt or map_reduce_prompt.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
|
||||
)
|
||||
_combine_prompt = (
|
||||
combine_prompt or map_reduce_prompt.COMBINE_PROMPT_SELECTOR.get_prompt(llm)
|
||||
)
|
||||
map_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_question_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
_reduce_llm = reduce_llm or llm
|
||||
reduce_chain = LLMChain(
|
||||
llm=_reduce_llm,
|
||||
prompt=_combine_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
# TODO: document prompt
|
||||
combine_documents_chain = StuffDocumentsChain(
|
||||
llm_chain=reduce_chain,
|
||||
document_variable_name=combine_document_variable_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
if collapse_prompt is None:
|
||||
collapse_chain = None
|
||||
if collapse_llm is not None:
|
||||
raise ValueError(
|
||||
"collapse_llm provided, but collapse_prompt was not: please "
|
||||
"provide one or stop providing collapse_llm."
|
||||
)
|
||||
else:
|
||||
_collapse_llm = collapse_llm or llm
|
||||
collapse_chain = StuffDocumentsChain(
|
||||
llm_chain=LLMChain(
|
||||
llm=_collapse_llm,
|
||||
prompt=collapse_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
),
|
||||
document_variable_name=combine_document_variable_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
)
|
||||
reduce_documents_chain = ReduceDocumentsChain( # type: ignore[misc]
|
||||
combine_documents_chain=combine_documents_chain,
|
||||
collapse_documents_chain=collapse_chain,
|
||||
token_max=token_max,
|
||||
verbose=verbose,
|
||||
)
|
||||
return MapReduceDocumentsChain(
|
||||
llm_chain=map_chain,
|
||||
document_variable_name=map_reduce_document_variable_name,
|
||||
reduce_documents_chain=reduce_documents_chain,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_refine_chain(
|
||||
llm: BaseLanguageModel,
|
||||
question_prompt: Optional[BasePromptTemplate] = None,
|
||||
refine_prompt: Optional[BasePromptTemplate] = None,
|
||||
document_variable_name: str = "context_str",
|
||||
initial_response_name: str = "existing_answer",
|
||||
refine_llm: Optional[BaseLanguageModel] = None,
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> RefineDocumentsChain:
|
||||
_question_prompt = (
|
||||
question_prompt or refine_prompts.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
|
||||
)
|
||||
_refine_prompt = refine_prompt or refine_prompts.REFINE_PROMPT_SELECTOR.get_prompt(
|
||||
llm
|
||||
)
|
||||
initial_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_question_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
_refine_llm = refine_llm or llm
|
||||
refine_chain = LLMChain(
|
||||
llm=_refine_llm,
|
||||
prompt=_refine_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
return RefineDocumentsChain(
|
||||
initial_llm_chain=initial_chain,
|
||||
refine_llm_chain=refine_chain,
|
||||
document_variable_name=document_variable_name,
|
||||
initial_response_name=initial_response_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def load_qa_chain(
|
||||
llm: BaseLanguageModel,
|
||||
chain_type: str = "stuff",
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
**kwargs: Any,
|
||||
) -> BaseCombineDocumentsChain:
|
||||
"""Load question answering chain.
|
||||
|
||||
Args:
|
||||
llm: Language Model to use in the chain.
|
||||
chain_type: Type of document combining chain to use. Should be one of "stuff",
|
||||
"map_reduce", "map_rerank", and "refine".
|
||||
verbose: Whether chains should be run in verbose mode or not. Note that this
|
||||
applies to all chains that make up the final chain.
|
||||
callback_manager: Callback manager to use for the chain.
|
||||
|
||||
Returns:
|
||||
A chain to use for question answering.
|
||||
"""
|
||||
loader_mapping: Mapping[str, LoadingCallable] = {
|
||||
"stuff": _load_stuff_chain,
|
||||
"map_reduce": _load_map_reduce_chain,
|
||||
"refine": _load_refine_chain,
|
||||
"map_rerank": _load_map_rerank_chain,
|
||||
}
|
||||
if chain_type not in loader_mapping:
|
||||
raise ValueError(
|
||||
f"Got unsupported chain type: {chain_type}. "
|
||||
f"Should be one of {loader_mapping.keys()}"
|
||||
)
|
||||
return loader_mapping[chain_type](
|
||||
llm, verbose=verbose, callback_manager=callback_manager, **kwargs
|
||||
)
|
||||
__all__ = [
|
||||
"LoadingCallable",
|
||||
"load_qa_chain",
|
||||
]
|
||||
|
251
libs/langchain/langchain/chains/question_answering/chain.py
Normal file
251
libs/langchain/langchain/chains/question_answering/chain.py
Normal file
@ -0,0 +1,251 @@
|
||||
"""Load question answering chains."""
|
||||
from typing import Any, Mapping, Optional, Protocol
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackManager, Callbacks
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.prompts import BasePromptTemplate
|
||||
|
||||
from langchain.chains import ReduceDocumentsChain
|
||||
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
|
||||
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
|
||||
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
|
||||
from langchain.chains.combine_documents.refine import RefineDocumentsChain
|
||||
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.question_answering import (
|
||||
map_reduce_prompt,
|
||||
refine_prompts,
|
||||
stuff_prompt,
|
||||
)
|
||||
from langchain.chains.question_answering.map_rerank_prompt import (
|
||||
PROMPT as MAP_RERANK_PROMPT,
|
||||
)
|
||||
|
||||
|
||||
class LoadingCallable(Protocol):
|
||||
"""Interface for loading the combine documents chain."""
|
||||
|
||||
def __call__(
|
||||
self, llm: BaseLanguageModel, **kwargs: Any
|
||||
) -> BaseCombineDocumentsChain:
|
||||
"""Callable to load the combine documents chain."""
|
||||
|
||||
|
||||
def _load_map_rerank_chain(
|
||||
llm: BaseLanguageModel,
|
||||
prompt: BasePromptTemplate = MAP_RERANK_PROMPT,
|
||||
verbose: bool = False,
|
||||
document_variable_name: str = "context",
|
||||
rank_key: str = "score",
|
||||
answer_key: str = "answer",
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> MapRerankDocumentsChain:
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
verbose=verbose,
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
return MapRerankDocumentsChain(
|
||||
llm_chain=llm_chain,
|
||||
rank_key=rank_key,
|
||||
answer_key=answer_key,
|
||||
document_variable_name=document_variable_name,
|
||||
verbose=verbose,
|
||||
callback_manager=callback_manager,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_stuff_chain(
|
||||
llm: BaseLanguageModel,
|
||||
prompt: Optional[BasePromptTemplate] = None,
|
||||
document_variable_name: str = "context",
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> StuffDocumentsChain:
|
||||
_prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
# TODO: document prompt
|
||||
return StuffDocumentsChain(
|
||||
llm_chain=llm_chain,
|
||||
document_variable_name=document_variable_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_map_reduce_chain(
|
||||
llm: BaseLanguageModel,
|
||||
question_prompt: Optional[BasePromptTemplate] = None,
|
||||
combine_prompt: Optional[BasePromptTemplate] = None,
|
||||
combine_document_variable_name: str = "summaries",
|
||||
map_reduce_document_variable_name: str = "context",
|
||||
collapse_prompt: Optional[BasePromptTemplate] = None,
|
||||
reduce_llm: Optional[BaseLanguageModel] = None,
|
||||
collapse_llm: Optional[BaseLanguageModel] = None,
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
token_max: int = 3000,
|
||||
**kwargs: Any,
|
||||
) -> MapReduceDocumentsChain:
|
||||
_question_prompt = (
|
||||
question_prompt or map_reduce_prompt.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
|
||||
)
|
||||
_combine_prompt = (
|
||||
combine_prompt or map_reduce_prompt.COMBINE_PROMPT_SELECTOR.get_prompt(llm)
|
||||
)
|
||||
map_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_question_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
_reduce_llm = reduce_llm or llm
|
||||
reduce_chain = LLMChain(
|
||||
llm=_reduce_llm,
|
||||
prompt=_combine_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
# TODO: document prompt
|
||||
combine_documents_chain = StuffDocumentsChain(
|
||||
llm_chain=reduce_chain,
|
||||
document_variable_name=combine_document_variable_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
if collapse_prompt is None:
|
||||
collapse_chain = None
|
||||
if collapse_llm is not None:
|
||||
raise ValueError(
|
||||
"collapse_llm provided, but collapse_prompt was not: please "
|
||||
"provide one or stop providing collapse_llm."
|
||||
)
|
||||
else:
|
||||
_collapse_llm = collapse_llm or llm
|
||||
collapse_chain = StuffDocumentsChain(
|
||||
llm_chain=LLMChain(
|
||||
llm=_collapse_llm,
|
||||
prompt=collapse_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
),
|
||||
document_variable_name=combine_document_variable_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
)
|
||||
reduce_documents_chain = ReduceDocumentsChain( # type: ignore[misc]
|
||||
combine_documents_chain=combine_documents_chain,
|
||||
collapse_documents_chain=collapse_chain,
|
||||
token_max=token_max,
|
||||
verbose=verbose,
|
||||
)
|
||||
return MapReduceDocumentsChain(
|
||||
llm_chain=map_chain,
|
||||
document_variable_name=map_reduce_document_variable_name,
|
||||
reduce_documents_chain=reduce_documents_chain,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_refine_chain(
|
||||
llm: BaseLanguageModel,
|
||||
question_prompt: Optional[BasePromptTemplate] = None,
|
||||
refine_prompt: Optional[BasePromptTemplate] = None,
|
||||
document_variable_name: str = "context_str",
|
||||
initial_response_name: str = "existing_answer",
|
||||
refine_llm: Optional[BaseLanguageModel] = None,
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> RefineDocumentsChain:
|
||||
_question_prompt = (
|
||||
question_prompt or refine_prompts.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
|
||||
)
|
||||
_refine_prompt = refine_prompt or refine_prompts.REFINE_PROMPT_SELECTOR.get_prompt(
|
||||
llm
|
||||
)
|
||||
initial_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_question_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
_refine_llm = refine_llm or llm
|
||||
refine_chain = LLMChain(
|
||||
llm=_refine_llm,
|
||||
prompt=_refine_prompt,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
return RefineDocumentsChain(
|
||||
initial_llm_chain=initial_chain,
|
||||
refine_llm_chain=refine_chain,
|
||||
document_variable_name=document_variable_name,
|
||||
initial_response_name=initial_response_name,
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def load_qa_chain(
|
||||
llm: BaseLanguageModel,
|
||||
chain_type: str = "stuff",
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
**kwargs: Any,
|
||||
) -> BaseCombineDocumentsChain:
|
||||
"""Load question answering chain.
|
||||
|
||||
Args:
|
||||
llm: Language Model to use in the chain.
|
||||
chain_type: Type of document combining chain to use. Should be one of "stuff",
|
||||
"map_reduce", "map_rerank", and "refine".
|
||||
verbose: Whether chains should be run in verbose mode or not. Note that this
|
||||
applies to all chains that make up the final chain.
|
||||
callback_manager: Callback manager to use for the chain.
|
||||
|
||||
Returns:
|
||||
A chain to use for question answering.
|
||||
"""
|
||||
loader_mapping: Mapping[str, LoadingCallable] = {
|
||||
"stuff": _load_stuff_chain,
|
||||
"map_reduce": _load_map_reduce_chain,
|
||||
"refine": _load_refine_chain,
|
||||
"map_rerank": _load_map_rerank_chain,
|
||||
}
|
||||
if chain_type not in loader_mapping:
|
||||
raise ValueError(
|
||||
f"Got unsupported chain type: {chain_type}. "
|
||||
f"Should be one of {loader_mapping.keys()}"
|
||||
)
|
||||
return loader_mapping[chain_type](
|
||||
llm, verbose=verbose, callback_manager=callback_manager, **kwargs
|
||||
)
|
Loading…
Reference in New Issue
Block a user