mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-07 22:11:51 +00:00
partners[lint]: run pyupgrade
to get code in line with 3.9 standards (#30781)
Using `pyupgrade` to get all `partners` code up to 3.9 standards (mostly, fixing old `typing` imports).
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
@@ -40,16 +40,16 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
cache_folder: Optional[str] = None
|
||||
"""Path to store models.
|
||||
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
model_kwargs: dict[str, Any] = Field(default_factory=dict)
|
||||
"""Keyword arguments to pass to the Sentence Transformer model, such as `device`,
|
||||
`prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`.
|
||||
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer"""
|
||||
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
encode_kwargs: dict[str, Any] = Field(default_factory=dict)
|
||||
"""Keyword arguments to pass when calling the `encode` method for the documents of
|
||||
the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`,
|
||||
`precision`, `normalize_embeddings`, and more.
|
||||
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
|
||||
query_encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
query_encode_kwargs: dict[str, Any] = Field(default_factory=dict)
|
||||
"""Keyword arguments to pass when calling the `encode` method for the query of
|
||||
the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`,
|
||||
`precision`, `normalize_embeddings`, and more.
|
||||
@@ -102,8 +102,8 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
|
||||
def _embed(
|
||||
self, texts: list[str], encode_kwargs: Dict[str, Any]
|
||||
) -> List[List[float]]:
|
||||
self, texts: list[str], encode_kwargs: dict[str, Any]
|
||||
) -> list[list[float]]:
|
||||
"""
|
||||
Embed a text using the HuggingFace transformer model.
|
||||
|
||||
@@ -138,7 +138,7 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
return embeddings.tolist()
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Compute doc embeddings using a HuggingFace transformer model.
|
||||
|
||||
Args:
|
||||
@@ -149,7 +149,7 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
"""
|
||||
return self._embed(texts, self.encode_kwargs)
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Compute query embeddings using a HuggingFace transformer model.
|
||||
|
||||
Args:
|
||||
|
Reference in New Issue
Block a user