mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-21 14:18:52 +00:00
Added bind_tools
support for ChatMLX
along with small fix in _stream
(#28743)
- **Description:** Added Support for `bind_tool` as requested in the issue. Plus two issue in `_stream` were fixed: - Corrected the Positional Argument Passing for `generate_step` - Accountability if `token` returned by `generate_step` is integer. - **Issue:** #28692
This commit is contained in:
parent
558b65ea32
commit
8d746086ab
@ -1,11 +1,23 @@
|
||||
"""MLX Chat Wrapper."""
|
||||
|
||||
from typing import Any, Iterator, List, Optional
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import LanguageModelInput
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
@ -20,6 +32,9 @@ from langchain_core.outputs import (
|
||||
ChatResult,
|
||||
LLMResult,
|
||||
)
|
||||
from langchain_core.runnables import Runnable
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
from langchain_community.llms.mlx_pipeline import MLXPipeline
|
||||
|
||||
@ -94,7 +109,6 @@ class ChatMLX(BaseChatModel):
|
||||
raise ValueError("Last message must be a HumanMessage!")
|
||||
|
||||
messages_dicts = [self._to_chatml_format(m) for m in messages]
|
||||
|
||||
return self.tokenizer.apply_chat_template(
|
||||
messages_dicts,
|
||||
tokenize=tokenize,
|
||||
@ -173,15 +187,18 @@ class ChatMLX(BaseChatModel):
|
||||
generate_step(
|
||||
prompt_tokens,
|
||||
self.llm.model,
|
||||
temp,
|
||||
repetition_penalty,
|
||||
repetition_context_size,
|
||||
temp=temp,
|
||||
repetition_penalty=repetition_penalty,
|
||||
repetition_context_size=repetition_context_size,
|
||||
),
|
||||
range(max_new_tokens),
|
||||
):
|
||||
# identify text to yield
|
||||
text: Optional[str] = None
|
||||
text = self.tokenizer.decode(token.item())
|
||||
if not isinstance(token, int):
|
||||
text = self.tokenizer.decode(token.item())
|
||||
else:
|
||||
text = self.tokenizer.decode(token)
|
||||
|
||||
# yield text, if any
|
||||
if text:
|
||||
@ -193,3 +210,59 @@ class ChatMLX(BaseChatModel):
|
||||
# break if stop sequence found
|
||||
if token == eos_token_id or (stop is not None and text in stop):
|
||||
break
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]],
|
||||
*,
|
||||
tool_choice: Optional[Union[dict, str, Literal["auto", "none"], bool]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind tool-like objects to this chat model.
|
||||
|
||||
Assumes model is compatible with OpenAI tool-calling API.
|
||||
|
||||
Args:
|
||||
tools: A list of tool definitions to bind to this chat model.
|
||||
Supports any tool definition handled by
|
||||
:meth:`langchain_core.utils.function_calling.convert_to_openai_tool`.
|
||||
tool_choice: Which tool to require the model to call.
|
||||
Must be the name of the single provided function or
|
||||
"auto" to automatically determine which function to call
|
||||
(if any), or a dict of the form:
|
||||
{"type": "function", "function": {"name": <<tool_name>>}}.
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
"""
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
if tool_choice is not None and tool_choice:
|
||||
if len(formatted_tools) != 1:
|
||||
raise ValueError(
|
||||
"When specifying `tool_choice`, you must provide exactly one "
|
||||
f"tool. Received {len(formatted_tools)} tools."
|
||||
)
|
||||
if isinstance(tool_choice, str):
|
||||
if tool_choice not in ("auto", "none"):
|
||||
tool_choice = {
|
||||
"type": "function",
|
||||
"function": {"name": tool_choice},
|
||||
}
|
||||
elif isinstance(tool_choice, bool):
|
||||
tool_choice = formatted_tools[0]
|
||||
elif isinstance(tool_choice, dict):
|
||||
if (
|
||||
formatted_tools[0]["function"]["name"]
|
||||
!= tool_choice["function"]["name"]
|
||||
):
|
||||
raise ValueError(
|
||||
f"Tool choice {tool_choice} was specified, but the only "
|
||||
f"provided tool was {formatted_tools[0]['function']['name']}."
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized tool_choice type. Expected str, bool or dict. "
|
||||
f"Received: {tool_choice}"
|
||||
)
|
||||
kwargs["tool_choice"] = tool_choice
|
||||
return super().bind(tools=formatted_tools, **kwargs)
|
||||
|
Loading…
Reference in New Issue
Block a user