mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-18 18:53:10 +00:00
Harrison/initial glossary (#61)
This commit is contained in:
parent
8764ac2b55
commit
8f907161e3
@ -2,7 +2,7 @@
|
||||
|
||||
⚡ Building applications with LLMs through composability ⚡
|
||||
|
||||
[](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [](https://opensource.org/licenses/MIT) [](https://discord.gg/6adMQxSpJS)
|
||||
|
||||
|
||||
|
||||
|
@ -38,6 +38,7 @@ extensions = [
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinxcontrib.autodoc_pydantic",
|
||||
"myst_parser",
|
||||
]
|
||||
|
||||
autodoc_pydantic_model_show_json = False
|
||||
@ -68,6 +69,14 @@ exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
# html_theme = "sphinx_typlog_theme"
|
||||
|
||||
html_context = {
|
||||
"display_github": True, # Integrate GitHub
|
||||
"github_user": "hwchase17", # Username
|
||||
"github_repo": "langchain", # Repo name
|
||||
"github_version": "master", # Version
|
||||
"conf_py_path": "/docs/", # Path in the checkout to the docs root
|
||||
}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
|
71
docs/glossary.md
Normal file
71
docs/glossary.md
Normal file
@ -0,0 +1,71 @@
|
||||
# Glossary
|
||||
|
||||
This is a collection of terminology commonly used when developing LLM applications.
|
||||
It contains reference to external papers or sources where the concept was first introduced,
|
||||
as well as to places in LangChain where the concept is used.
|
||||
|
||||
### Chain of Thought Prompting
|
||||
|
||||
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
|
||||
A less formal way to induce this behavior is to include “Let’s think step-by-step” in the prompt.
|
||||
|
||||
Resources:
|
||||
- [Chain-of-Thought Paper](https://arxiv.org/pdf/2201.11903.pdf)
|
||||
- [Step-by-Step Paper](https://arxiv.org/abs/2112.00114)
|
||||
|
||||
### Action Plan Generation
|
||||
|
||||
A prompt usage that uses a language model to generate actions to take.
|
||||
The results of these actions can then be fed back into the language model to generate a subsequent action.
|
||||
|
||||
Resources:
|
||||
- [WebGPT Paper](https://arxiv.org/pdf/2112.09332.pdf)
|
||||
- [SayCan Paper](https://say-can.github.io/assets/palm_saycan.pdf)
|
||||
|
||||
### ReAct Prompting
|
||||
|
||||
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
|
||||
This induces the to model to think about what action to take, then take it.
|
||||
|
||||
Resources:
|
||||
- [Paper](https://arxiv.org/pdf/2210.03629.pdf)
|
||||
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/examples/react.ipynb)
|
||||
|
||||
### Self-ask
|
||||
|
||||
A prompting method that builds on top of chain-of-thought prompting.
|
||||
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
|
||||
|
||||
Resources:
|
||||
- [Paper](https://ofir.io/self-ask.pdf)
|
||||
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/examples/self_ask_with_search.ipynb)
|
||||
|
||||
### Prompt Chaining
|
||||
|
||||
Combining multiple LLM calls together, with the output of one step being the input to the next.
|
||||
|
||||
Resources:
|
||||
- [Paper](https://arxiv.org/pdf/2203.06566.pdf)
|
||||
|
||||
### Mimetic Proxy
|
||||
|
||||
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
|
||||
|
||||
Resources:
|
||||
- [Paper](https://arxiv.org/pdf/2102.07350.pdf)
|
||||
|
||||
### Self Consistency
|
||||
|
||||
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
|
||||
Is most effective when combined with Chain-of-thought prompting.
|
||||
|
||||
Resources:
|
||||
- [Paper](https://arxiv.org/pdf/2203.11171.pdf)
|
||||
|
||||
### Inception
|
||||
|
||||
Also called “First Person Instruction”.
|
||||
Encouraging the model to think a certain way by including the start of the model’s response in the prompt.
|
||||
|
||||
Resources:
|
||||
- [Example](https://twitter.com/goodside/status/1583262455207460865?s=20&t=8Hz7XBnK1OF8siQrxxCIGQ)
|
@ -9,3 +9,10 @@ Welcome to LangChain
|
||||
modules/llms
|
||||
modules/embeddings
|
||||
modules/chains
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Resources
|
||||
|
||||
glossary.md
|
||||
Discord <https://discord.gg/6adMQxSpJS>
|
||||
|
@ -3,3 +3,4 @@ sphinx-autobuild==2021.3.14
|
||||
sphinx_rtd_theme==1.0.0
|
||||
sphinx-typlog-theme==0.8.0
|
||||
autodoc_pydantic==1.8.0
|
||||
myst_parser
|
||||
|
Loading…
Reference in New Issue
Block a user