docs: ecosystem/integrations update 5 (#5752)

- added missed integration to `docs/ecosystem/integrations/`
- updated notebooks to consistent format: changed titles, file names;
added descriptions

#### Who can review?
 @hwchase17 
 @dev2049
This commit is contained in:
Leonid Ganeline
2023-06-05 16:08:55 -07:00
committed by GitHub
parent aea090045b
commit 92a5f00ffb
27 changed files with 431 additions and 309 deletions

View File

@@ -1,4 +1,4 @@
# Bedrock
# Amazon Bedrock
>[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case.
@@ -18,7 +18,7 @@ from langchain import Bedrock
## Text Embedding Models
See a [usage example](../modules/models/text_embedding/examples/bedrock.ipynb).
See a [usage example](../modules/models/text_embedding/examples/amazon_bedrock.ipynb).
```python
from langchain.embeddings import BedrockEmbeddings
```

View File

@@ -0,0 +1,26 @@
# Anthropic
>[Anthropic](https://en.wikipedia.org/wiki/Anthropic) is an American artificial intelligence (AI) startup and
> public-benefit corporation, founded by former members of OpenAI. `Anthropic` specializes in developing general AI
> systems and language models, with a company ethos of responsible AI usage.
> `Anthropic` develops a chatbot, named `Claude`. Similar to `ChatGPT`, `Claude` uses a messaging
> interface where users can submit questions or requests and receive highly detailed and relevant responses.
## Installation and Setup
```bash
pip install anthropic
```
See the [setup documentation](https://console.anthropic.com/docs/access).
## Chat Models
See a [usage example](../modules/models/chat/integrations/anthropic.ipynb)
```python
from langchain.chat_models import ChatAnthropic
```

View File

@@ -1,7 +1,8 @@
# Beam
This page covers how to use Beam within LangChain.
It is broken into two parts: installation and setup, and then references to specific Beam wrappers.
>[Beam](https://docs.beam.cloud/introduction) makes it easy to run code on GPUs, deploy scalable web APIs,
> schedule cron jobs, and run massively parallel workloads — without managing any infrastructure.
## Installation and Setup
@@ -9,19 +10,19 @@ It is broken into two parts: installation and setup, and then references to spec
- Install the Beam CLI with `curl https://raw.githubusercontent.com/slai-labs/get-beam/main/get-beam.sh -sSfL | sh`
- Register API keys with `beam configure`
- Set environment variables (`BEAM_CLIENT_ID`) and (`BEAM_CLIENT_SECRET`)
- Install the Beam SDK `pip install beam-sdk`
- Install the Beam SDK:
```bash
pip install beam-sdk
```
## Wrappers
## LLM
### LLM
There exists a Beam LLM wrapper, which you can access with
```python
from langchain.llms.beam import Beam
```
## Define your Beam app.
### Example of the Beam app
This is the environment youll be developing against once you start the app.
It's also used to define the maximum response length from the model.
@@ -44,7 +45,7 @@ llm = Beam(model_name="gpt2",
verbose=False)
```
## Deploy your Beam app
### Deploy the Beam app
Once defined, you can deploy your Beam app by calling your model's `_deploy()` method.
@@ -52,9 +53,9 @@ Once defined, you can deploy your Beam app by calling your model's `_deploy()` m
llm._deploy()
```
## Call your Beam app
### Call the Beam app
Once a beam model is deployed, it can be called by callying your model's `_call()` method.
Once a beam model is deployed, it can be called by calling your model's `_call()` method.
This returns the GPT2 text response to your prompt.
```python

View File

@@ -0,0 +1,24 @@
# Google Vertex AI
>[Vertex AI](https://cloud.google.com/vertex-ai/docs/start/introduction-unified-platform) is a machine learning (ML)
> platform that lets you train and deploy ML models and AI applications.
> `Vertex AI` combines data engineering, data science, and ML engineering workflows, enabling your teams to
> collaborate using a common toolset.
## Installation and Setup
```bash
pip install google-cloud-aiplatform
```
See the [setup instructions](../modules/models/chat/integrations/google_vertex_ai_palm.ipynb)
## Chat Models
See a [usage example](../modules/models/chat/integrations/google_vertex_ai_palm.ipynb)
```python
from langchain.chat_models import ChatVertexAI
```

View File

@@ -47,7 +47,7 @@ To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.embeddings import HuggingFaceHubEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/huggingfacehub.ipynb)
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/huggingface_hub.ipynb)
### Tokenizer

View File

@@ -35,7 +35,6 @@ from langchain.llms import AzureOpenAI
For a more detailed walkthrough of the `Azure` wrapper, see [this notebook](../modules/models/llms/integrations/azure_openai_example.ipynb)
## Text Embedding Model
```python
@@ -44,6 +43,14 @@ from langchain.embeddings import OpenAIEmbeddings
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/openai.ipynb)
## Chat Model
```python
from langchain.chat_models import ChatOpenAI
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/chat/integrations/openai.ipynb)
## Tokenizer
There are several places you can use the `tiktoken` tokenizer. By default, it is used to count tokens

View File

@@ -1,19 +1,23 @@
# Prediction Guard
This page covers how to use the Prediction Guard ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.
>[Prediction Guard](https://docs.predictionguard.com/) gives a quick and easy access to state-of-the-art open and closed access LLMs, without needing to spend days and weeks figuring out all of the implementation details, managing a bunch of different API specs, and setting up the infrastructure for model deployments.
## Installation and Setup
- Install the Python SDK with `pip install predictionguard`
- Install the Python SDK:
```bash
pip install predictionguard
```
- Get an Prediction Guard access token (as described [here](https://docs.predictionguard.com/)) and set it as an environment variable (`PREDICTIONGUARD_TOKEN`)
## LLM Wrapper
## LLM
There exists a Prediction Guard LLM wrapper, which you can access with
```python
from langchain.llms import PredictionGuard
```
### Example
You can provide the name of the Prediction Guard model as an argument when initializing the LLM:
```python
pgllm = PredictionGuard(model="MPT-7B-Instruct")
@@ -24,14 +28,12 @@ You can also provide your access token directly as an argument:
pgllm = PredictionGuard(model="MPT-7B-Instruct", token="<your access token>")
```
Finally, you can provide an "output" argument that is used to structure/ control the output of the LLM:
Also, you can provide an "output" argument that is used to structure/ control the output of the LLM:
```python
pgllm = PredictionGuard(model="MPT-7B-Instruct", output={"type": "boolean"})
```
## Example usage
Basic usage of the controlled or guarded LLM wrapper:
#### Basic usage of the controlled or guarded LLM:
```python
import os
@@ -72,7 +74,7 @@ pgllm = PredictionGuard(model="MPT-7B-Instruct",
pgllm(prompt.format(query="What kind of post is this?"))
```
Basic LLM Chaining with the Prediction Guard wrapper:
#### Basic LLM Chaining with the Prediction Guard:
```python
import os

View File

@@ -1,31 +1,35 @@
# PromptLayer
This page covers how to use [PromptLayer](https://www.promptlayer.com) within LangChain.
It is broken into two parts: installation and setup, and then references to specific PromptLayer wrappers.
>[PromptLayer](https://docs.promptlayer.com/what-is-promptlayer/wxpF9EZkUwvdkwvVE9XEvC/how-promptlayer-works/dvgGSxNe6nB1jj8mUVbG8r)
> is a devtool that allows you to track, manage, and share your GPT prompt engineering.
> It acts as a middleware between your code and OpenAI's python library, recording all your API requests
> and saving relevant metadata for easy exploration and search in the [PromptLayer](https://www.promptlayer.com) dashboard.
## Installation and Setup
If you want to work with PromptLayer:
- Install the promptlayer python library `pip install promptlayer`
- Install the `promptlayer` python library
```bash
pip install promptlayer
```
- Create a PromptLayer account
- Create an api token and set it as an environment variable (`PROMPTLAYER_API_KEY`)
## Wrappers
### LLM
## LLM
There exists an PromptLayer OpenAI LLM wrapper, which you can access with
```python
from langchain.llms import PromptLayerOpenAI
```
To tag your requests, use the argument `pl_tags` when instanializing the LLM
### Example
To tag your requests, use the argument `pl_tags` when instantiating the LLM
```python
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(pl_tags=["langchain-requests", "chatbot"])
```
To get the PromptLayer request id, use the argument `return_pl_id` when instanializing the LLM
To get the PromptLayer request id, use the argument `return_pl_id` when instantiating the LLM
```python
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(return_pl_id=True)
@@ -42,8 +46,14 @@ You can use the PromptLayer request ID to add a prompt, score, or other metadata
This LLM is identical to the [OpenAI LLM](./openai.md), except that
- all your requests will be logged to your PromptLayer account
- you can add `pl_tags` when instantializing to tag your requests on PromptLayer
- you can add `return_pl_id` when instantializing to return a PromptLayer request id to use [while tracking requests](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
- you can add `pl_tags` when instantiating to tag your requests on PromptLayer
- you can add `return_pl_id` when instantiating to return a PromptLayer request id to use [while tracking requests](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
## Chat Model
```python
from langchain.chat_models import PromptLayerChatOpenAI
```
See a [usage example](../modules/models/chat/integrations/promptlayer_chatopenai.ipynb).
PromptLayer also provides native wrappers for [`PromptLayerChatOpenAI`](../modules/models/chat/integrations/promptlayer_chatopenai.ipynb) and `PromptLayerOpenAIChat`

View File

@@ -0,0 +1,22 @@
# Tensorflow Hub
>[TensorFlow Hub](https://www.tensorflow.org/hub) is a repository of trained machine learning models ready for fine-tuning and deployable anywhere.
>[TensorFlow Hub](https://tfhub.dev/) lets you search and discover hundreds of trained, ready-to-deploy machine learning models in one place.
## Installation and Setup
```bash
pip install tensorflow-hub
pip install tensorflow_text
```
## Text Embedding Models
See a [usage example](../modules/models/text_embedding/examples/tensorflowhub.ipynb)
```python
from langchain.embeddings import TensorflowHubEmbeddings
```