feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)

- **Description:** Introducing support for LLMs and Chat models running
in Azure AI studio and Azure ML using the new deployment mode
pay-as-you-go (model as a service).
- **Issue:** NA
- **Dependencies:** None.
- **Tag maintainer:** @prakharg-msft @gdyre 
- **Twitter handle:** @santiagofacundo

Examples added:
*
[docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb)
*
[docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
Facundo Santiago
2024-01-23 22:08:51 -03:00
committed by GitHub
parent 9ce177580a
commit 92e6a641fd
6 changed files with 630 additions and 206 deletions

View File

@@ -1,8 +1,8 @@
import json
from typing import Any, Dict, List, Optional, cast
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import SimpleChatModel
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
@@ -10,16 +10,24 @@ from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
from langchain_core.pydantic_v1 import SecretStr, validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_community.llms.azureml_endpoint import (
AzureMLEndpointClient,
AzureMLBaseEndpoint,
AzureMLEndpointApiType,
ContentFormatterBase,
)
class LlamaContentFormatter(ContentFormatterBase):
def __init__(self):
raise TypeError(
"`LlamaContentFormatter` is deprecated for chat models. Use "
"`LlamaChatContentFormatter` instead."
)
class LlamaChatContentFormatter(ContentFormatterBase):
"""Content formatter for `LLaMA`."""
SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"]
@@ -45,7 +53,7 @@ class LlamaContentFormatter(ContentFormatterBase):
}
elif (
isinstance(message, ChatMessage)
and message.role in LlamaContentFormatter.SUPPORTED_ROLES
and message.role in LlamaChatContentFormatter.SUPPORTED_ROLES
):
return {
"role": message.role,
@@ -53,79 +61,96 @@ class LlamaContentFormatter(ContentFormatterBase):
}
else:
supported = ",".join(
[role for role in LlamaContentFormatter.SUPPORTED_ROLES]
[role for role in LlamaChatContentFormatter.SUPPORTED_ROLES]
)
raise ValueError(
f"""Received unsupported role.
Supported roles for the LLaMa Foundation Model: {supported}"""
)
def _format_request_payload(
self, messages: List[BaseMessage], model_kwargs: Dict
) -> bytes:
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.realtime, AzureMLEndpointApiType.serverless]
def format_request_payload(
self,
messages: List[BaseMessage],
model_kwargs: Dict,
api_type: AzureMLEndpointApiType,
) -> str:
"""Formats the request according to the chosen api"""
chat_messages = [
LlamaContentFormatter._convert_message_to_dict(message)
LlamaChatContentFormatter._convert_message_to_dict(message)
for message in messages
]
prompt = json.dumps(
{"input_data": {"input_string": chat_messages, "parameters": model_kwargs}}
)
return self.format_request_payload(prompt=prompt, model_kwargs=model_kwargs)
if api_type == AzureMLEndpointApiType.realtime:
request_payload = json.dumps(
{
"input_data": {
"input_string": chat_messages,
"parameters": model_kwargs,
}
}
)
elif api_type == AzureMLEndpointApiType.serverless:
request_payload = json.dumps({"messages": chat_messages, **model_kwargs})
else:
raise ValueError(
f"`api_type` {api_type} is not supported by this formatter"
)
return str.encode(request_payload)
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
"""Formats the request according to the chosen api"""
return str.encode(prompt)
def format_response_payload(self, output: bytes) -> str:
def format_response_payload(
self, output: bytes, api_type: AzureMLEndpointApiType
) -> ChatGeneration:
"""Formats response"""
return json.loads(output)["output"]
if api_type == AzureMLEndpointApiType.realtime:
try:
choice = json.loads(output)["output"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return ChatGeneration(
message=BaseMessage(
content=choice.strip(),
type="assistant",
),
generation_info=None,
)
if api_type == AzureMLEndpointApiType.serverless:
try:
choice = json.loads(output)["choices"][0]
if not isinstance(choice, dict):
raise TypeError(
"Endpoint response is not well formed for a chat "
"model. Expected `dict` but `{type(choice)}` was received."
)
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return ChatGeneration(
message=BaseMessage(
content=choice["message"]["content"].strip(),
type=choice["message"]["role"],
),
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
class AzureMLChatOnlineEndpoint(SimpleChatModel):
"""`AzureML` Chat models API.
class AzureMLChatOnlineEndpoint(BaseChatModel, AzureMLBaseEndpoint):
"""Azure ML Online Endpoint chat models.
Example:
.. code-block:: python
azure_chat = AzureMLChatOnlineEndpoint(
azure_llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
endpoint_api_type=AzureMLApiType.realtime,
endpoint_api_key="my-api-key",
content_formatter=content_formatter,
content_formatter=chat_content_formatter,
)
"""
endpoint_url: str = ""
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_URL`."""
endpoint_api_key: SecretStr = convert_to_secret_str("")
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_API_KEY`."""
http_client: Any = None #: :meta private:
content_formatter: Any = None
"""The content formatter that provides an input and output
transform function to handle formats between the LLM and
the endpoint"""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
@validator("http_client", always=True, allow_reuse=True)
@classmethod
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
"""Validate that api key and python package exist in environment."""
values["endpoint_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY")
)
endpoint_url = get_from_dict_or_env(
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
)
http_client = AzureMLEndpointClient(
endpoint_url, values["endpoint_api_key"].get_secret_value()
)
return http_client
""" # noqa: E501
@property
def _identifying_params(self) -> Dict[str, Any]:
@@ -140,13 +165,13 @@ class AzureMLChatOnlineEndpoint(SimpleChatModel):
"""Return type of llm."""
return "azureml_chat_endpoint"
def _call(
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
) -> ChatResult:
"""Call out to an AzureML Managed Online endpoint.
Args:
messages: The messages in the conversation with the chat model.
@@ -158,12 +183,17 @@ class AzureMLChatOnlineEndpoint(SimpleChatModel):
response = azureml_model("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
_model_kwargs.update(kwargs)
if stop:
_model_kwargs["stop"] = stop
request_payload = self.content_formatter._format_request_payload(
messages, _model_kwargs
request_payload = self.content_formatter.format_request_payload(
messages, _model_kwargs, self.endpoint_api_type
)
response_payload = self.http_client.call(request_payload, **kwargs)
generated_text = self.content_formatter.format_response_payload(
response_payload
response_payload = self.http_client.call(
body=request_payload, run_manager=run_manager
)
return generated_text
generations = self.content_formatter.format_response_payload(
response_payload, self.endpoint_api_type
)
return ChatResult(generations=[generations])

View File

@@ -2,12 +2,14 @@ import json
import urllib.request
import warnings
from abc import abstractmethod
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import BaseModel, validator
from langchain_core.utils import get_from_dict_or_env
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator, validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
class AzureMLEndpointClient(object):
@@ -26,7 +28,12 @@ class AzureMLEndpointClient(object):
self.endpoint_api_key = endpoint_api_key
self.deployment_name = deployment_name
def call(self, body: bytes, **kwargs: Any) -> bytes:
def call(
self,
body: bytes,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> bytes:
"""call."""
# The azureml-model-deployment header will force the request to go to a
@@ -45,6 +52,16 @@ class AzureMLEndpointClient(object):
return result
class AzureMLEndpointApiType(str, Enum):
"""Azure ML endpoints API types. Use `realtime` for models deployed in hosted
infrastructure, or `serverless` for models deployed as a service with a
pay-as-you-go billing or PTU.
"""
realtime = "realtime"
serverless = "serverless"
class ContentFormatterBase:
"""Transform request and response of AzureML endpoint to match with
required schema.
@@ -61,7 +78,8 @@ class ContentFormatterBase:
def format_request_payload(
self,
prompt: str,
model_kwargs: Dict
model_kwargs: Dict,
api_type: AzureMLEndpointApiType,
) -> bytes:
input_str = json.dumps(
{
@@ -71,7 +89,9 @@ class ContentFormatterBase:
)
return str.encode(input_str)
def format_response_payload(self, output: str) -> str:
def format_response_payload(
self, output: str, api_type: AzureMLEndpointApiType
) -> str:
response_json = json.loads(output)
return response_json[0]["0"]
"""
@@ -81,6 +101,12 @@ class ContentFormatterBase:
accepts: Optional[str] = "application/json"
"""The MIME type of the response data returned from the endpoint"""
format_error_msg: Optional[str] = (
"Error while formatting response payload for chat model of type "
" `{api_type}`. Are you using the right formatter for the deployed "
" model and endpoint type?"
)
@staticmethod
def escape_special_characters(prompt: str) -> str:
"""Escapes any special characters in `prompt`"""
@@ -100,15 +126,32 @@ class ContentFormatterBase:
return prompt
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
"""Supported APIs for the given formatter. Azure ML supports
deploying models using different hosting methods. Each method may have
a different API structure."""
return [AzureMLEndpointApiType.realtime]
@abstractmethod
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
def format_request_payload(
self,
prompt: str,
model_kwargs: Dict,
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime,
) -> bytes:
"""Formats the request body according to the input schema of
the model. Returns bytes or seekable file like object in the
format specified in the content_type request header.
"""
@abstractmethod
def format_response_payload(self, output: bytes) -> str:
def format_response_payload(
self,
output: bytes,
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime,
) -> Generation:
"""Formats the response body according to the output
schema of the model. Returns the data type that is
received from the response.
@@ -118,15 +161,27 @@ class ContentFormatterBase:
class GPT2ContentFormatter(ContentFormatterBase):
"""Content handler for GPT2"""
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.realtime]
def format_request_payload(
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs}
)
return str.encode(request_payload)
def format_response_payload(self, output: bytes) -> str:
return json.loads(output)[0]["0"]
def format_response_payload(
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]["0"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return Generation(text=choice)
class OSSContentFormatter(GPT2ContentFormatter):
@@ -148,21 +203,39 @@ class OSSContentFormatter(GPT2ContentFormatter):
class HFContentFormatter(ContentFormatterBase):
"""Content handler for LLMs from the HuggingFace catalog."""
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.realtime]
def format_request_payload(
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{"inputs": [f'"{prompt}"'], "parameters": model_kwargs}
)
return str.encode(request_payload)
def format_response_payload(self, output: bytes) -> str:
return json.loads(output)[0]["generated_text"]
def format_response_payload(
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]["0"]["generated_text"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return Generation(text=choice)
class DollyContentFormatter(ContentFormatterBase):
"""Content handler for the Dolly-v2-12b model"""
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.realtime]
def format_request_payload(
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{
@@ -172,49 +245,88 @@ class DollyContentFormatter(ContentFormatterBase):
)
return str.encode(request_payload)
def format_response_payload(self, output: bytes) -> str:
return json.loads(output)[0]
def format_response_payload(
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return Generation(text=choice)
class LlamaContentFormatter(ContentFormatterBase):
"""Content formatter for LLaMa"""
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.realtime, AzureMLEndpointApiType.serverless]
def format_request_payload(
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
"""Formats the request according to the chosen api"""
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{
"input_data": {
"input_string": [f'"{prompt}"'],
"parameters": model_kwargs,
if api_type == AzureMLEndpointApiType.realtime:
request_payload = json.dumps(
{
"input_data": {
"input_string": [f'"{prompt}"'],
"parameters": model_kwargs,
}
}
}
)
)
elif api_type == AzureMLEndpointApiType.serverless:
request_payload = json.dumps({"prompt": prompt, **model_kwargs})
else:
raise ValueError(
f"`api_type` {api_type} is not supported by this formatter"
)
return str.encode(request_payload)
def format_response_payload(self, output: bytes) -> str:
def format_response_payload(
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
"""Formats response"""
return json.loads(output)[0]["0"]
class AzureMLOnlineEndpoint(LLM, BaseModel):
"""Azure ML Online Endpoint models.
Example:
.. code-block:: python
azure_llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
endpoint_api_key="my-api-key",
content_formatter=content_formatter,
if api_type == AzureMLEndpointApiType.realtime:
try:
choice = json.loads(output)[0]["0"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return Generation(text=choice)
if api_type == AzureMLEndpointApiType.serverless:
try:
choice = json.loads(output)["choices"][0]
if not isinstance(choice, dict):
raise TypeError(
"Endpoint response is not well formed for a chat "
"model. Expected `dict` but `{type(choice)}` was "
"received."
)
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
return Generation(
text=choice["text"].strip(),
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
""" # noqa: E501
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
class AzureMLBaseEndpoint(BaseModel):
"""Azure ML Online Endpoint models."""
endpoint_url: str = ""
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_URL`."""
endpoint_api_key: str = ""
endpoint_api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime
"""Type of the endpoint being consumed. Possible values are `serverless` for
pay-as-you-go and `realtime` for real-time endpoints. """
endpoint_api_key: SecretStr = convert_to_secret_str("")
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_API_KEY`."""
@@ -232,22 +344,106 @@ class AzureMLOnlineEndpoint(LLM, BaseModel):
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
@validator("http_client", always=True, allow_reuse=True)
@classmethod
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
"""Validate that api key and python package exists in environment."""
endpoint_key = get_from_dict_or_env(
values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY"
@root_validator(pre=True)
def validate_environ(cls, values: Dict) -> Dict:
values["endpoint_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY")
)
endpoint_url = get_from_dict_or_env(
values["endpoint_url"] = get_from_dict_or_env(
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
)
deployment_name = get_from_dict_or_env(
values["deployment_name"] = get_from_dict_or_env(
values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", ""
)
http_client = AzureMLEndpointClient(endpoint_url, endpoint_key, deployment_name)
values["endpoint_api_type"] = get_from_dict_or_env(
values,
"endpoint_api_type",
"AZUREML_ENDPOINT_API_TYPE",
AzureMLEndpointApiType.realtime,
)
return values
@validator("content_formatter")
def validate_content_formatter(
cls, field_value: Any, values: Dict
) -> ContentFormatterBase:
"""Validate that content formatter is supported by endpoint type."""
endpoint_api_type = values.get("endpoint_api_type")
if endpoint_api_type not in field_value.supported_api_types:
raise ValueError(
f"Content formatter f{type(field_value)} is not supported by this "
f"endpoint. Supported types are {field_value.supported_api_types} "
f"but endpoint is {endpoint_api_type}."
)
return field_value
@validator("endpoint_url")
def validate_endpoint_url(cls, field_value: Any) -> str:
"""Validate that endpoint url is complete."""
if field_value.endswith("/"):
field_value = field_value[:-1]
if field_value.endswith("inference.ml.azure.com"):
raise ValueError(
"`endpoint_url` should contain the full invocation URL including "
"`/score` for `endpoint_api_type='realtime'` or `/v1/completions` "
"or `/v1/chat/completions` for `endpoint_api_type='serverless'`"
)
return field_value
@validator("endpoint_api_type")
def validate_endpoint_api_type(
cls, field_value: Any, values: Dict
) -> AzureMLEndpointApiType:
"""Validate that endpoint api type is compatible with the URL format."""
endpoint_url = values.get("endpoint_url")
if field_value == AzureMLEndpointApiType.realtime and not endpoint_url.endswith(
"/score"
):
raise ValueError(
"Endpoints of type `realtime` should follow the format "
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/score`."
" If your endpoint URL ends with `/v1/completions` or"
"`/v1/chat/completions`, use `endpoint_api_type='serverless'` instead."
)
if field_value == AzureMLEndpointApiType.serverless and not (
endpoint_url.endswith("/v1/completions")
or endpoint_url.endswith("/v1/chat/completions")
):
raise ValueError(
"Endpoints of type `serverless` should follow the format "
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`"
" or `https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`"
)
return field_value
@validator("http_client", always=True)
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
"""Validate that api key and python package exists in environment."""
endpoint_url = values.get("endpoint_url")
endpoint_key = values.get("endpoint_api_key")
deployment_name = values.get("deployment_name")
http_client = AzureMLEndpointClient(
endpoint_url, endpoint_key.get_secret_value(), deployment_name
)
return http_client
class AzureMLOnlineEndpoint(BaseLLM, AzureMLBaseEndpoint):
"""Azure ML Online Endpoint models.
Example:
.. code-block:: python
azure_llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
endpoint_api_type=AzureMLApiType.realtime,
endpoint_api_key="my-api-key",
content_formatter=content_formatter,
)
""" # noqa: E501
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
@@ -262,16 +458,17 @@ class AzureMLOnlineEndpoint(LLM, BaseModel):
"""Return type of llm."""
return "azureml_endpoint"
def _call(
def _generate(
self,
prompt: str,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to an AzureML Managed Online endpoint.
) -> LLMResult:
"""Run the LLM on the given prompts.
Args:
prompt: The prompt to pass into the model.
prompts: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
@@ -280,12 +477,21 @@ class AzureMLOnlineEndpoint(LLM, BaseModel):
response = azureml_model("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
_model_kwargs.update(kwargs)
if stop:
_model_kwargs["stop"] = stop
generations = []
request_payload = self.content_formatter.format_request_payload(
prompt, _model_kwargs
)
response_payload = self.http_client.call(request_payload, **kwargs)
generated_text = self.content_formatter.format_response_payload(
response_payload
)
return generated_text
for prompt in prompts:
request_payload = self.content_formatter.format_request_payload(
prompt, _model_kwargs, self.endpoint_api_type
)
response_payload = self.http_client.call(
body=request_payload, run_manager=run_manager
)
generated_text = self.content_formatter.format_response_payload(
response_payload, self.endpoint_api_type
)
generations.append([generated_text])
return LLMResult(generations=generations)

View File

@@ -5,31 +5,31 @@ from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_community.chat_models.azureml_endpoint import (
AzureMLChatOnlineEndpoint,
LlamaContentFormatter,
LlamaChatContentFormatter,
)
def test_llama_call() -> None:
"""Test valid call to Open Source Foundation Model."""
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter())
response = chat(messages=[HumanMessage(content="Foo")])
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
response = chat.invoke([HumanMessage(content="Foo")])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_timeout_kwargs() -> None:
def test_temperature_kwargs() -> None:
"""Test that timeout kwarg works."""
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter())
response = chat(messages=[HumanMessage(content="FOO")], timeout=60)
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
response = chat.invoke([HumanMessage(content="FOO")], temperature=0.8)
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_message_history() -> None:
"""Test that multiple messages works."""
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter())
response = chat(
messages=[
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
response = chat.invoke(
[
HumanMessage(content="Hello."),
AIMessage(content="Hello!"),
HumanMessage(content="How are you doing?"),
@@ -40,7 +40,7 @@ def test_message_history() -> None:
def test_multiple_messages() -> None:
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter())
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
message = HumanMessage(content="Hi!")
response = chat.generate([[message], [message]])

View File

@@ -7,6 +7,7 @@ from typing import Dict
from urllib.request import HTTPError
import pytest
from langchain_core.pydantic_v1 import ValidationError
from langchain_community.llms.azureml_endpoint import (
AzureMLOnlineEndpoint,
@@ -26,7 +27,7 @@ def test_gpt2_call() -> None:
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
content_formatter=OSSContentFormatter(),
)
output = llm("Foo")
output = llm.invoke("Foo")
assert isinstance(output, str)
@@ -38,7 +39,7 @@ def test_hf_call() -> None:
deployment_name=os.getenv("HF_DEPLOYMENT_NAME"),
content_formatter=HFContentFormatter(),
)
output = llm("Foo")
output = llm.invoke("Foo")
assert isinstance(output, str)
@@ -50,7 +51,7 @@ def test_dolly_call() -> None:
deployment_name=os.getenv("DOLLY_DEPLOYMENT_NAME"),
content_formatter=DollyContentFormatter(),
)
output = llm("Foo")
output = llm.invoke("Foo")
assert isinstance(output, str)
@@ -81,7 +82,7 @@ def test_custom_formatter() -> None:
deployment_name=os.getenv("BART_DEPLOYMENT_NAME"),
content_formatter=CustomFormatter(),
)
output = llm("Foo")
output = llm.invoke("Foo")
assert isinstance(output, str)
@@ -93,7 +94,7 @@ def test_missing_content_formatter() -> None:
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
)
llm("Foo")
llm.invoke("Foo")
def test_invalid_request_format() -> None:
@@ -123,7 +124,31 @@ def test_invalid_request_format() -> None:
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
content_formatter=CustomContentFormatter(),
)
llm("Foo")
llm.invoke("Foo")
def test_incorrect_url() -> None:
"""Testing AzureML Endpoint for an incorrect URL"""
with pytest.raises(ValidationError):
llm = AzureMLOnlineEndpoint(
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
endpoint_url="https://endpoint.inference.com",
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
content_formatter=OSSContentFormatter(),
)
llm.invoke("Foo")
def test_incorrect_api_type() -> None:
with pytest.raises(ValidationError):
llm = AzureMLOnlineEndpoint(
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
endpoint_api_type="serverless",
content_formatter=OSSContentFormatter(),
)
llm.invoke("Foo")
def test_incorrect_key() -> None:
@@ -135,7 +160,7 @@ def test_incorrect_key() -> None:
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
content_formatter=OSSContentFormatter(),
)
llm("Foo")
llm.invoke("Foo")
def test_saving_loading_llm(tmp_path: Path) -> None: