mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 23:12:38 +00:00
feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)
- **Description:** Introducing support for LLMs and Chat models running in Azure AI studio and Azure ML using the new deployment mode pay-as-you-go (model as a service). - **Issue:** NA - **Dependencies:** None. - **Tag maintainer:** @prakharg-msft @gdyre - **Twitter handle:** @santiagofacundo Examples added: * [docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb) * [docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb) --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
@@ -1,8 +1,8 @@
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional, cast
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.chat_models import SimpleChatModel
|
||||
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
@@ -10,16 +10,24 @@ from langchain_core.messages import (
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.pydantic_v1 import SecretStr, validator
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult
|
||||
|
||||
from langchain_community.llms.azureml_endpoint import (
|
||||
AzureMLEndpointClient,
|
||||
AzureMLBaseEndpoint,
|
||||
AzureMLEndpointApiType,
|
||||
ContentFormatterBase,
|
||||
)
|
||||
|
||||
|
||||
class LlamaContentFormatter(ContentFormatterBase):
|
||||
def __init__(self):
|
||||
raise TypeError(
|
||||
"`LlamaContentFormatter` is deprecated for chat models. Use "
|
||||
"`LlamaChatContentFormatter` instead."
|
||||
)
|
||||
|
||||
|
||||
class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
"""Content formatter for `LLaMA`."""
|
||||
|
||||
SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"]
|
||||
@@ -45,7 +53,7 @@ class LlamaContentFormatter(ContentFormatterBase):
|
||||
}
|
||||
elif (
|
||||
isinstance(message, ChatMessage)
|
||||
and message.role in LlamaContentFormatter.SUPPORTED_ROLES
|
||||
and message.role in LlamaChatContentFormatter.SUPPORTED_ROLES
|
||||
):
|
||||
return {
|
||||
"role": message.role,
|
||||
@@ -53,79 +61,96 @@ class LlamaContentFormatter(ContentFormatterBase):
|
||||
}
|
||||
else:
|
||||
supported = ",".join(
|
||||
[role for role in LlamaContentFormatter.SUPPORTED_ROLES]
|
||||
[role for role in LlamaChatContentFormatter.SUPPORTED_ROLES]
|
||||
)
|
||||
raise ValueError(
|
||||
f"""Received unsupported role.
|
||||
Supported roles for the LLaMa Foundation Model: {supported}"""
|
||||
)
|
||||
|
||||
def _format_request_payload(
|
||||
self, messages: List[BaseMessage], model_kwargs: Dict
|
||||
) -> bytes:
|
||||
@property
|
||||
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
||||
return [AzureMLEndpointApiType.realtime, AzureMLEndpointApiType.serverless]
|
||||
|
||||
def format_request_payload(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
model_kwargs: Dict,
|
||||
api_type: AzureMLEndpointApiType,
|
||||
) -> str:
|
||||
"""Formats the request according to the chosen api"""
|
||||
chat_messages = [
|
||||
LlamaContentFormatter._convert_message_to_dict(message)
|
||||
LlamaChatContentFormatter._convert_message_to_dict(message)
|
||||
for message in messages
|
||||
]
|
||||
prompt = json.dumps(
|
||||
{"input_data": {"input_string": chat_messages, "parameters": model_kwargs}}
|
||||
)
|
||||
return self.format_request_payload(prompt=prompt, model_kwargs=model_kwargs)
|
||||
if api_type == AzureMLEndpointApiType.realtime:
|
||||
request_payload = json.dumps(
|
||||
{
|
||||
"input_data": {
|
||||
"input_string": chat_messages,
|
||||
"parameters": model_kwargs,
|
||||
}
|
||||
}
|
||||
)
|
||||
elif api_type == AzureMLEndpointApiType.serverless:
|
||||
request_payload = json.dumps({"messages": chat_messages, **model_kwargs})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"`api_type` {api_type} is not supported by this formatter"
|
||||
)
|
||||
return str.encode(request_payload)
|
||||
|
||||
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
||||
"""Formats the request according to the chosen api"""
|
||||
return str.encode(prompt)
|
||||
|
||||
def format_response_payload(self, output: bytes) -> str:
|
||||
def format_response_payload(
|
||||
self, output: bytes, api_type: AzureMLEndpointApiType
|
||||
) -> ChatGeneration:
|
||||
"""Formats response"""
|
||||
return json.loads(output)["output"]
|
||||
if api_type == AzureMLEndpointApiType.realtime:
|
||||
try:
|
||||
choice = json.loads(output)["output"]
|
||||
except (KeyError, IndexError, TypeError) as e:
|
||||
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
|
||||
return ChatGeneration(
|
||||
message=BaseMessage(
|
||||
content=choice.strip(),
|
||||
type="assistant",
|
||||
),
|
||||
generation_info=None,
|
||||
)
|
||||
if api_type == AzureMLEndpointApiType.serverless:
|
||||
try:
|
||||
choice = json.loads(output)["choices"][0]
|
||||
if not isinstance(choice, dict):
|
||||
raise TypeError(
|
||||
"Endpoint response is not well formed for a chat "
|
||||
"model. Expected `dict` but `{type(choice)}` was received."
|
||||
)
|
||||
except (KeyError, IndexError, TypeError) as e:
|
||||
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
|
||||
return ChatGeneration(
|
||||
message=BaseMessage(
|
||||
content=choice["message"]["content"].strip(),
|
||||
type=choice["message"]["role"],
|
||||
),
|
||||
generation_info=dict(
|
||||
finish_reason=choice.get("finish_reason"),
|
||||
logprobs=choice.get("logprobs"),
|
||||
),
|
||||
)
|
||||
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
|
||||
|
||||
|
||||
class AzureMLChatOnlineEndpoint(SimpleChatModel):
|
||||
"""`AzureML` Chat models API.
|
||||
class AzureMLChatOnlineEndpoint(BaseChatModel, AzureMLBaseEndpoint):
|
||||
"""Azure ML Online Endpoint chat models.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
azure_chat = AzureMLChatOnlineEndpoint(
|
||||
azure_llm = AzureMLOnlineEndpoint(
|
||||
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
||||
endpoint_api_type=AzureMLApiType.realtime,
|
||||
endpoint_api_key="my-api-key",
|
||||
content_formatter=content_formatter,
|
||||
content_formatter=chat_content_formatter,
|
||||
)
|
||||
"""
|
||||
|
||||
endpoint_url: str = ""
|
||||
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
|
||||
env var `AZUREML_ENDPOINT_URL`."""
|
||||
|
||||
endpoint_api_key: SecretStr = convert_to_secret_str("")
|
||||
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
|
||||
env var `AZUREML_ENDPOINT_API_KEY`."""
|
||||
|
||||
http_client: Any = None #: :meta private:
|
||||
|
||||
content_formatter: Any = None
|
||||
"""The content formatter that provides an input and output
|
||||
transform function to handle formats between the LLM and
|
||||
the endpoint"""
|
||||
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments to pass to the model."""
|
||||
|
||||
@validator("http_client", always=True, allow_reuse=True)
|
||||
@classmethod
|
||||
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
|
||||
"""Validate that api key and python package exist in environment."""
|
||||
values["endpoint_api_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY")
|
||||
)
|
||||
endpoint_url = get_from_dict_or_env(
|
||||
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
|
||||
)
|
||||
http_client = AzureMLEndpointClient(
|
||||
endpoint_url, values["endpoint_api_key"].get_secret_value()
|
||||
)
|
||||
return http_client
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
@@ -140,13 +165,13 @@ class AzureMLChatOnlineEndpoint(SimpleChatModel):
|
||||
"""Return type of llm."""
|
||||
return "azureml_chat_endpoint"
|
||||
|
||||
def _call(
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
) -> ChatResult:
|
||||
"""Call out to an AzureML Managed Online endpoint.
|
||||
Args:
|
||||
messages: The messages in the conversation with the chat model.
|
||||
@@ -158,12 +183,17 @@ class AzureMLChatOnlineEndpoint(SimpleChatModel):
|
||||
response = azureml_model("Tell me a joke.")
|
||||
"""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
_model_kwargs.update(kwargs)
|
||||
if stop:
|
||||
_model_kwargs["stop"] = stop
|
||||
|
||||
request_payload = self.content_formatter._format_request_payload(
|
||||
messages, _model_kwargs
|
||||
request_payload = self.content_formatter.format_request_payload(
|
||||
messages, _model_kwargs, self.endpoint_api_type
|
||||
)
|
||||
response_payload = self.http_client.call(request_payload, **kwargs)
|
||||
generated_text = self.content_formatter.format_response_payload(
|
||||
response_payload
|
||||
response_payload = self.http_client.call(
|
||||
body=request_payload, run_manager=run_manager
|
||||
)
|
||||
return generated_text
|
||||
generations = self.content_formatter.format_response_payload(
|
||||
response_payload, self.endpoint_api_type
|
||||
)
|
||||
return ChatResult(generations=[generations])
|
||||
|
Reference in New Issue
Block a user