mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-10 07:21:03 +00:00
Add scoring chain (#11123)
<!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. -->
This commit is contained in:
@@ -43,7 +43,7 @@ For more details, the docs on the Clarifai Embeddings wrapper provide a [detaile
|
||||
|
||||
Clarifai's vector DB was launched in 2016 and has been optimized to support live search queries. With workflows in the Clarifai platform, you data is automatically indexed by am embedding model and optionally other models as well to index that information in the DB for search. You can query the DB not only via the vectors but also filter by metadata matches, other AI predicted concepts, and even do geo-coordinate search. Simply create an application, select the appropriate base workflow for your type of data, and upload it (through the API as [documented here](https://docs.clarifai.com/api-guide/data/create-get-update-delete) or the UIs at clarifai.com).
|
||||
|
||||
You an also add data directly from LangChain as well, and the auto-indexing will take place for you. You'll notice this is a little different than other vectorstores where you need to provde an embedding model in their constructor and have LangChain coordinate getting the embeddings from text and writing those to the index. Not only is it more convenient, but it's much more scalable to use Clarifai's distributed cloud to do all the index in the background.
|
||||
You an also add data directly from LangChain as well, and the auto-indexing will take place for you. You'll notice this is a little different than other vectorstores where you need to provide an embedding model in their constructor and have LangChain coordinate getting the embeddings from text and writing those to the index. Not only is it more convenient, but it's much more scalable to use Clarifai's distributed cloud to do all the index in the background.
|
||||
|
||||
```python
|
||||
from langchain.vectorstores import Clarifai
|
||||
|
@@ -62,7 +62,7 @@ Deploy on Jina AI Cloud with `lc-serve deploy jcloud app`. Once deployed, we can
|
||||
```bash
|
||||
curl -X 'POST' 'https://<your-app>.wolf.jina.ai/ask' \
|
||||
-d '{
|
||||
"input": "Your Quesion here?",
|
||||
"input": "Your Question here?",
|
||||
"envs": {
|
||||
"OPENAI_API_KEY": "sk-***"
|
||||
}
|
||||
|
@@ -3,7 +3,7 @@
|
||||
Learn how to use LangChain with models on Predibase.
|
||||
|
||||
## Setup
|
||||
- Create a [Predibase](hhttps://predibase.com/) account and [API key](https://docs.predibase.com/sdk-guide/intro).
|
||||
- Create a [Predibase](https://predibase.com/) account and [API key](https://docs.predibase.com/sdk-guide/intro).
|
||||
- Install the Predibase Python client with `pip install predibase`
|
||||
- Use your API key to authenticate
|
||||
|
||||
|
Reference in New Issue
Block a user