mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 23:54:14 +00:00
Support for Gradient.ai embedding (#10968)
Adds support for gradient.ai's embedding model. This will remain a Draft, as the code will likely be refactored with the `pip install gradientai` python sdk.
This commit is contained in:
parent
5fd13c22ad
commit
94e31647bd
150
docs/extras/integrations/text_embedding/gradient.ipynb
Normal file
150
docs/extras/integrations/text_embedding/gradient.ipynb
Normal file
@ -0,0 +1,150 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Gradient\n",
|
||||||
|
"\n",
|
||||||
|
"`Gradient` allows to create `Embeddings` as well fine tune and get completions on LLMs with a simple web API.\n",
|
||||||
|
"\n",
|
||||||
|
"This notebook goes over how to use Langchain with Embeddings of [Gradient](https://gradient.ai/).\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Imports"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.embeddings import GradientEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Set the Environment API Key\n",
|
||||||
|
"Make sure to get your API key from Gradient AI. You are given $10 in free credits to test and fine-tune different models."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from getpass import getpass\n",
|
||||||
|
"import os\n",
|
||||||
|
"\n",
|
||||||
|
"if not os.environ.get(\"GRADIENT_ACCESS_TOKEN\",None):\n",
|
||||||
|
" # Access token under https://auth.gradient.ai/select-workspace\n",
|
||||||
|
" os.environ[\"GRADIENT_ACCESS_TOKEN\"] = getpass(\"gradient.ai access token:\")\n",
|
||||||
|
"if not os.environ.get(\"GRADIENT_WORKSPACE_ID\",None):\n",
|
||||||
|
" # `ID` listed in `$ gradient workspace list`\n",
|
||||||
|
" # also displayed after login at at https://auth.gradient.ai/select-workspace\n",
|
||||||
|
" os.environ[\"GRADIENT_WORKSPACE_ID\"] = getpass(\"gradient.ai workspace id:\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Optional: Validate your Enviroment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models. Using the `gradientai` Python package."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install gradientai"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Create the Gradient instance"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"documents = [\"Pizza is a dish.\",\"Paris is the capital of France\", \"numpy is a lib for linear algebra\"]\n",
|
||||||
|
"query = \"Where is Paris?\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"embeddings = GradientEmbeddings(\n",
|
||||||
|
" model=\"bge-large\"\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"documents_embedded = embeddings.embed_documents(documents)\n",
|
||||||
|
"query_result = embeddings.embed_query(query)\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# (demo) compute similarity\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"\n",
|
||||||
|
"scores = np.array(documents_embedded) @ np.array(query_result).T\n",
|
||||||
|
"dict(zip(documents, scores))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.6"
|
||||||
|
},
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
@ -33,6 +33,7 @@ from langchain.embeddings.ernie import ErnieEmbeddings
|
|||||||
from langchain.embeddings.fake import DeterministicFakeEmbedding, FakeEmbeddings
|
from langchain.embeddings.fake import DeterministicFakeEmbedding, FakeEmbeddings
|
||||||
from langchain.embeddings.google_palm import GooglePalmEmbeddings
|
from langchain.embeddings.google_palm import GooglePalmEmbeddings
|
||||||
from langchain.embeddings.gpt4all import GPT4AllEmbeddings
|
from langchain.embeddings.gpt4all import GPT4AllEmbeddings
|
||||||
|
from langchain.embeddings.gradient_ai import GradientEmbeddings
|
||||||
from langchain.embeddings.huggingface import (
|
from langchain.embeddings.huggingface import (
|
||||||
HuggingFaceBgeEmbeddings,
|
HuggingFaceBgeEmbeddings,
|
||||||
HuggingFaceEmbeddings,
|
HuggingFaceEmbeddings,
|
||||||
@ -74,6 +75,7 @@ __all__ = [
|
|||||||
"ElasticsearchEmbeddings",
|
"ElasticsearchEmbeddings",
|
||||||
"HuggingFaceEmbeddings",
|
"HuggingFaceEmbeddings",
|
||||||
"HuggingFaceInferenceAPIEmbeddings",
|
"HuggingFaceInferenceAPIEmbeddings",
|
||||||
|
"GradientEmbeddings",
|
||||||
"JinaEmbeddings",
|
"JinaEmbeddings",
|
||||||
"LlamaCppEmbeddings",
|
"LlamaCppEmbeddings",
|
||||||
"HuggingFaceHubEmbeddings",
|
"HuggingFaceHubEmbeddings",
|
||||||
|
377
libs/langchain/langchain/embeddings/gradient_ai.py
Normal file
377
libs/langchain/langchain/embeddings/gradient_ai.py
Normal file
@ -0,0 +1,377 @@
|
|||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import aiohttp
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
|
||||||
|
from langchain.pydantic_v1 import BaseModel, Extra, root_validator
|
||||||
|
from langchain.schema.embeddings import Embeddings
|
||||||
|
from langchain.utils import get_from_dict_or_env
|
||||||
|
|
||||||
|
|
||||||
|
class GradientEmbeddings(BaseModel, Embeddings):
|
||||||
|
"""Gradient.ai Embedding models.
|
||||||
|
|
||||||
|
GradientLLM is a class to interact with Embedding Models on gradient.ai
|
||||||
|
|
||||||
|
To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your
|
||||||
|
API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace,
|
||||||
|
or alternatively provide them as keywords to the constructor of this class.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.embeddings import GradientEmbeddings
|
||||||
|
GradientEmbeddings(
|
||||||
|
model="bge-large",
|
||||||
|
gradient_workspace_id="12345614fc0_workspace",
|
||||||
|
gradient_access_token="gradientai-access_token",
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
|
||||||
|
model: str
|
||||||
|
"Underlying gradient.ai model id."
|
||||||
|
|
||||||
|
gradient_workspace_id: Optional[str] = None
|
||||||
|
"Underlying gradient.ai workspace_id."
|
||||||
|
|
||||||
|
gradient_access_token: Optional[str] = None
|
||||||
|
"""gradient.ai API Token, which can be generated by going to
|
||||||
|
https://auth.gradient.ai/select-workspace
|
||||||
|
and selecting "Access tokens" under the profile drop-down.
|
||||||
|
"""
|
||||||
|
|
||||||
|
gradient_api_url: str = "https://api.gradient.ai/api"
|
||||||
|
"""Endpoint URL to use."""
|
||||||
|
|
||||||
|
client: Any #: :meta private:
|
||||||
|
"""Gradient client."""
|
||||||
|
|
||||||
|
# LLM call kwargs
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
@root_validator(allow_reuse=True)
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
"""Validate that api key and python package exists in environment."""
|
||||||
|
|
||||||
|
values["gradient_access_token"] = get_from_dict_or_env(
|
||||||
|
values, "gradient_access_token", "GRADIENT_ACCESS_TOKEN"
|
||||||
|
)
|
||||||
|
values["gradient_workspace_id"] = get_from_dict_or_env(
|
||||||
|
values, "gradient_workspace_id", "GRADIENT_WORKSPACE_ID"
|
||||||
|
)
|
||||||
|
|
||||||
|
values["gradient_api_url"] = get_from_dict_or_env(
|
||||||
|
values, "gradient_api_url", "GRADIENT_API_URL"
|
||||||
|
)
|
||||||
|
|
||||||
|
values["client"] = TinyAsyncGradientEmbeddingClient(
|
||||||
|
access_token=values["gradient_access_token"],
|
||||||
|
workspace_id=values["gradient_workspace_id"],
|
||||||
|
host=values["gradient_api_url"],
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
import gradientai # noqa
|
||||||
|
except ImportError:
|
||||||
|
logging.warning(
|
||||||
|
"DeprecationWarning: `GradientEmbeddings` will use "
|
||||||
|
"`pip install gradientai` in future releases of langchain."
|
||||||
|
)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return values
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Call out to Gradient's embedding endpoint.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
embeddings = self.client.embed(
|
||||||
|
model=self.model,
|
||||||
|
texts=texts,
|
||||||
|
)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Async call out to Gradient's embedding endpoint.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
embeddings = await self.client.aembed(
|
||||||
|
model=self.model,
|
||||||
|
texts=texts,
|
||||||
|
)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Call out to Gradient's embedding endpoint.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
return self.embed_documents([text])[0]
|
||||||
|
|
||||||
|
async def aembed_query(self, text: str) -> List[float]:
|
||||||
|
"""Async call out to Gradient's embedding endpoint.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
embeddings = await self.aembed_documents([text])
|
||||||
|
return embeddings[0]
|
||||||
|
|
||||||
|
|
||||||
|
class TinyAsyncGradientEmbeddingClient:
|
||||||
|
"""A helper tool to embed Gradient. Not part of Langchain's or Gradients stable API.
|
||||||
|
|
||||||
|
To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your
|
||||||
|
API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace,
|
||||||
|
or alternatively provide them as keywords to the constructor of this class.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
|
||||||
|
mini_client = TinyAsyncGradientEmbeddingClient(
|
||||||
|
workspace_id="12345614fc0_workspace",
|
||||||
|
access_token="gradientai-access_token",
|
||||||
|
)
|
||||||
|
embeds = mini_client.embed(
|
||||||
|
model="bge-large",
|
||||||
|
text=["doc1", "doc2"]
|
||||||
|
)
|
||||||
|
# or
|
||||||
|
embeds = await mini_client.aembed(
|
||||||
|
model="bge-large",
|
||||||
|
text=["doc1", "doc2"]
|
||||||
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
access_token: Optional[str] = None,
|
||||||
|
workspace_id: Optional[str] = None,
|
||||||
|
host: str = "https://api.gradient.ai/api",
|
||||||
|
aiosession: Optional[aiohttp.ClientSession] = None,
|
||||||
|
) -> None:
|
||||||
|
self.access_token = access_token or os.environ.get(
|
||||||
|
"GRADIENT_ACCESS_TOKEN", None
|
||||||
|
)
|
||||||
|
self.workspace_id = workspace_id or os.environ.get(
|
||||||
|
"GRADIENT_WORKSPACE_ID", None
|
||||||
|
)
|
||||||
|
self.host = host
|
||||||
|
self.aiosession = aiosession
|
||||||
|
|
||||||
|
if self.access_token is None or len(self.access_token) < 10:
|
||||||
|
raise ValueError(
|
||||||
|
"env variable `GRADIENT_ACCESS_TOKEN` or "
|
||||||
|
" param `access_token` must be set "
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.workspace_id is None or len(self.workspace_id) < 3:
|
||||||
|
raise ValueError(
|
||||||
|
"env variable `GRADIENT_WORKSPACE_ID` or "
|
||||||
|
" param `workspace_id` must be set"
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.host is None or len(self.host) < 3:
|
||||||
|
raise ValueError(" param `host` must be set to a valid url")
|
||||||
|
self._batch_size = 128
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _permute(
|
||||||
|
texts: List[str], sorter: Callable = len
|
||||||
|
) -> Tuple[List[str], Callable]:
|
||||||
|
"""Sort texts in ascending order, and
|
||||||
|
delivers a lambda expr, which can sort a same length list
|
||||||
|
https://github.com/UKPLab/sentence-transformers/blob/
|
||||||
|
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts (List[str]): _description_
|
||||||
|
sorter (Callable, optional): _description_. Defaults to len.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[List[str], Callable]: _description_
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```
|
||||||
|
texts = ["one","three","four"]
|
||||||
|
perm_texts, undo = self._permute(texts)
|
||||||
|
texts == undo(perm_texts)
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
if len(texts) == 1:
|
||||||
|
# special case query
|
||||||
|
return texts, lambda t: t
|
||||||
|
length_sorted_idx = np.argsort([-sorter(sen) for sen in texts])
|
||||||
|
texts_sorted = [texts[idx] for idx in length_sorted_idx]
|
||||||
|
|
||||||
|
return texts_sorted, lambda unsorted_embeddings: [ # noqa E731
|
||||||
|
unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx)
|
||||||
|
]
|
||||||
|
|
||||||
|
def _batch(self, texts: List[str]) -> List[List[str]]:
|
||||||
|
"""
|
||||||
|
splits Lists of text parts into batches of size max `self._batch_size`
|
||||||
|
When encoding vector database,
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts (List[str]): List of sentences
|
||||||
|
self._batch_size (int, optional): max batch size of one request.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[List[str]]: Batches of List of sentences
|
||||||
|
"""
|
||||||
|
if len(texts) == 1:
|
||||||
|
# special case query
|
||||||
|
return [texts]
|
||||||
|
batches = []
|
||||||
|
for start_index in range(0, len(texts), self._batch_size):
|
||||||
|
batches.append(texts[start_index : start_index + self._batch_size])
|
||||||
|
return batches
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]:
|
||||||
|
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
|
||||||
|
# special case query
|
||||||
|
return batch_of_texts[0]
|
||||||
|
texts = []
|
||||||
|
for sublist in batch_of_texts:
|
||||||
|
texts.extend(sublist)
|
||||||
|
return texts
|
||||||
|
|
||||||
|
def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]:
|
||||||
|
"""Build the kwargs for the Post request, used by sync
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (str): _description_
|
||||||
|
texts (List[str]): _description_
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict[str, Collection[str]]: _description_
|
||||||
|
"""
|
||||||
|
return dict(
|
||||||
|
url=f"{self.host}/embeddings/{model}",
|
||||||
|
headers={
|
||||||
|
"authorization": f"Bearer {self.access_token}",
|
||||||
|
"x-gradient-workspace-id": f"{self.workspace_id}",
|
||||||
|
"accept": "application/json",
|
||||||
|
"content-type": "application/json",
|
||||||
|
},
|
||||||
|
json=dict(
|
||||||
|
inputs=[{"input": i} for i in texts],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
def _sync_request_embed(
|
||||||
|
self, model: str, batch_texts: List[str]
|
||||||
|
) -> List[List[float]]:
|
||||||
|
response = requests.post(
|
||||||
|
**self._kwargs_post_request(model=model, texts=batch_texts)
|
||||||
|
)
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise Exception(
|
||||||
|
f"Gradient returned an unexpected response with status "
|
||||||
|
f"{response.status_code}: {response.text}"
|
||||||
|
)
|
||||||
|
return [e["embedding"] for e in response.json()["embeddings"]]
|
||||||
|
|
||||||
|
def embed(self, model: str, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""call the embedding of model
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (str): to embedding model
|
||||||
|
texts (List[str]): List of sentences to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[List[float]]: List of vectors for each sentence
|
||||||
|
"""
|
||||||
|
perm_texts, unpermute_func = self._permute(texts)
|
||||||
|
perm_texts_batched = self._batch(perm_texts)
|
||||||
|
|
||||||
|
# Request
|
||||||
|
map_args = (
|
||||||
|
self._sync_request_embed,
|
||||||
|
[model] * len(perm_texts_batched),
|
||||||
|
perm_texts_batched,
|
||||||
|
)
|
||||||
|
if len(perm_texts_batched) == 1:
|
||||||
|
embeddings_batch_perm = list(map(*map_args))
|
||||||
|
else:
|
||||||
|
with ThreadPoolExecutor(32) as p:
|
||||||
|
embeddings_batch_perm = list(p.map(*map_args))
|
||||||
|
|
||||||
|
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
||||||
|
embeddings = unpermute_func(embeddings_perm)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
async def _async_request(
|
||||||
|
self, session: aiohttp.ClientSession, kwargs: Dict[str, Any]
|
||||||
|
) -> List[List[float]]:
|
||||||
|
async with session.post(**kwargs) as response:
|
||||||
|
if response.status != 200:
|
||||||
|
raise Exception(
|
||||||
|
f"Gradient returned an unexpected response with status "
|
||||||
|
f"{response.status}: {response.text}"
|
||||||
|
)
|
||||||
|
embedding = (await response.json())["embeddings"]
|
||||||
|
return [e["embedding"] for e in embedding]
|
||||||
|
|
||||||
|
async def aembed(self, model: str, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""call the embedding of model, async method
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (str): to embedding model
|
||||||
|
texts (List[str]): List of sentences to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[List[float]]: List of vectors for each sentence
|
||||||
|
"""
|
||||||
|
perm_texts, unpermute_func = self._permute(texts)
|
||||||
|
perm_texts_batched = self._batch(perm_texts)
|
||||||
|
|
||||||
|
# Request
|
||||||
|
if self.aiosession is None:
|
||||||
|
self.aiosession = aiohttp.ClientSession(
|
||||||
|
trust_env=True, connector=aiohttp.TCPConnector(limit=32)
|
||||||
|
)
|
||||||
|
async with self.aiosession as session:
|
||||||
|
embeddings_batch_perm = await asyncio.gather(
|
||||||
|
*[
|
||||||
|
self._async_request(
|
||||||
|
session=session,
|
||||||
|
**self._kwargs_post_request(model=model, texts=t),
|
||||||
|
)
|
||||||
|
for t in perm_texts_batched
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
||||||
|
embeddings = unpermute_func(embeddings_perm)
|
||||||
|
return embeddings
|
147
libs/langchain/tests/unit_tests/embeddings/test_gradient_ai.py
Normal file
147
libs/langchain/tests/unit_tests/embeddings/test_gradient_ai.py
Normal file
@ -0,0 +1,147 @@
|
|||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
from pytest_mock import MockerFixture
|
||||||
|
|
||||||
|
from langchain.embeddings import GradientEmbeddings
|
||||||
|
|
||||||
|
_MODEL_ID = "my_model_valid_id"
|
||||||
|
_GRADIENT_SECRET = "secret_valid_token_123456"
|
||||||
|
_GRADIENT_WORKSPACE_ID = "valid_workspace_12345"
|
||||||
|
_GRADIENT_BASE_URL = "https://api.gradient.ai/api"
|
||||||
|
_DOCUMENTS = [
|
||||||
|
"pizza",
|
||||||
|
"another pizza",
|
||||||
|
"a document",
|
||||||
|
"another pizza",
|
||||||
|
"super long document with many tokens",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class MockResponse:
|
||||||
|
def __init__(self, json_data: Dict, status_code: int):
|
||||||
|
self.json_data = json_data
|
||||||
|
self.status_code = status_code
|
||||||
|
|
||||||
|
def json(self) -> Dict:
|
||||||
|
return self.json_data
|
||||||
|
|
||||||
|
|
||||||
|
def mocked_requests_post(
|
||||||
|
url: str,
|
||||||
|
headers: dict,
|
||||||
|
json: dict,
|
||||||
|
) -> MockResponse:
|
||||||
|
assert url.startswith(_GRADIENT_BASE_URL)
|
||||||
|
assert _MODEL_ID in url
|
||||||
|
assert json
|
||||||
|
assert headers
|
||||||
|
|
||||||
|
assert headers.get("authorization") == f"Bearer {_GRADIENT_SECRET}"
|
||||||
|
assert headers.get("x-gradient-workspace-id") == f"{_GRADIENT_WORKSPACE_ID}"
|
||||||
|
|
||||||
|
assert "inputs" in json and "input" in json["inputs"][0]
|
||||||
|
embeddings = []
|
||||||
|
for inp in json["inputs"]:
|
||||||
|
# verify correct ordering
|
||||||
|
inp = inp["input"]
|
||||||
|
if "pizza" in inp:
|
||||||
|
v = [1.0, 0.0, 0.0]
|
||||||
|
elif "document" in inp:
|
||||||
|
v = [0.0, 0.9, 0.0]
|
||||||
|
else:
|
||||||
|
v = [0.0, 0.0, -1.0]
|
||||||
|
if len(inp) > 10:
|
||||||
|
v[2] += 0.1
|
||||||
|
embeddings.append({"embedding": v})
|
||||||
|
|
||||||
|
return MockResponse(
|
||||||
|
json_data={"embeddings": embeddings},
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_gradient_llm_sync(
|
||||||
|
mocker: MockerFixture,
|
||||||
|
) -> None:
|
||||||
|
mocker.patch("requests.post", side_effect=mocked_requests_post)
|
||||||
|
|
||||||
|
embedder = GradientEmbeddings(
|
||||||
|
gradient_api_url=_GRADIENT_BASE_URL,
|
||||||
|
gradient_access_token=_GRADIENT_SECRET,
|
||||||
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
||||||
|
model=_MODEL_ID,
|
||||||
|
)
|
||||||
|
assert embedder.gradient_access_token == _GRADIENT_SECRET
|
||||||
|
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
|
||||||
|
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
|
||||||
|
assert embedder.model == _MODEL_ID
|
||||||
|
|
||||||
|
response = embedder.embed_documents(_DOCUMENTS)
|
||||||
|
want = [
|
||||||
|
[1.0, 0.0, 0.0], # pizza
|
||||||
|
[1.0, 0.0, 0.1], # pizza + long
|
||||||
|
[0.0, 0.9, 0.0], # doc
|
||||||
|
[1.0, 0.0, 0.1], # pizza + long
|
||||||
|
[0.0, 0.9, 0.1], # doc + long
|
||||||
|
]
|
||||||
|
|
||||||
|
assert response == want
|
||||||
|
|
||||||
|
|
||||||
|
def test_gradient_llm_large_batch_size(
|
||||||
|
mocker: MockerFixture,
|
||||||
|
) -> None:
|
||||||
|
mocker.patch("requests.post", side_effect=mocked_requests_post)
|
||||||
|
|
||||||
|
embedder = GradientEmbeddings(
|
||||||
|
gradient_api_url=_GRADIENT_BASE_URL,
|
||||||
|
gradient_access_token=_GRADIENT_SECRET,
|
||||||
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
||||||
|
model=_MODEL_ID,
|
||||||
|
)
|
||||||
|
assert embedder.gradient_access_token == _GRADIENT_SECRET
|
||||||
|
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
|
||||||
|
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
|
||||||
|
assert embedder.model == _MODEL_ID
|
||||||
|
|
||||||
|
response = embedder.embed_documents(_DOCUMENTS * 1024)
|
||||||
|
want = [
|
||||||
|
[1.0, 0.0, 0.0], # pizza
|
||||||
|
[1.0, 0.0, 0.1], # pizza + long
|
||||||
|
[0.0, 0.9, 0.0], # doc
|
||||||
|
[1.0, 0.0, 0.1], # pizza + long
|
||||||
|
[0.0, 0.9, 0.1], # doc + long
|
||||||
|
] * 1024
|
||||||
|
|
||||||
|
assert response == want
|
||||||
|
|
||||||
|
|
||||||
|
def test_gradient_wrong_setup(
|
||||||
|
mocker: MockerFixture,
|
||||||
|
) -> None:
|
||||||
|
mocker.patch("requests.post", side_effect=mocked_requests_post)
|
||||||
|
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
GradientEmbeddings(
|
||||||
|
gradient_api_url=_GRADIENT_BASE_URL,
|
||||||
|
gradient_access_token="", # empty
|
||||||
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
||||||
|
model=_MODEL_ID,
|
||||||
|
)
|
||||||
|
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
GradientEmbeddings(
|
||||||
|
gradient_api_url=_GRADIENT_BASE_URL,
|
||||||
|
gradient_access_token=_GRADIENT_SECRET,
|
||||||
|
gradient_workspace_id="", # empty
|
||||||
|
model=_MODEL_ID,
|
||||||
|
)
|
||||||
|
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
GradientEmbeddings(
|
||||||
|
gradient_api_url="-", # empty
|
||||||
|
gradient_access_token=_GRADIENT_SECRET,
|
||||||
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
||||||
|
model=_MODEL_ID,
|
||||||
|
)
|
Loading…
Reference in New Issue
Block a user