mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-06 03:27:55 +00:00
Hotfix: Qdrant.from_text embeddings (#713)
I'm providing a hotfix for Qdrant integration. Calculating a single embedding to obtain the vector size was great idea. However, that change introduced a bug trying to put only that single embedding into the database. It's fixed. Right now all the embeddings will be pushed to Qdrant.
This commit is contained in:
parent
b69b551c8b
commit
97c3544a1e
@ -177,8 +177,8 @@ class Qdrant(VectorStore):
|
|||||||
from qdrant_client.http import models as rest
|
from qdrant_client.http import models as rest
|
||||||
|
|
||||||
# Just do a single quick embedding to get vector size
|
# Just do a single quick embedding to get vector size
|
||||||
embeddings = embedding.embed_documents(texts[:1])
|
partial_embeddings = embedding.embed_documents(texts[:1])
|
||||||
vector_size = len(embeddings[0])
|
vector_size = len(partial_embeddings[0])
|
||||||
|
|
||||||
qdrant_host = get_from_dict_or_env(kwargs, "host", "QDRANT_HOST")
|
qdrant_host = get_from_dict_or_env(kwargs, "host", "QDRANT_HOST")
|
||||||
kwargs.pop("host")
|
kwargs.pop("host")
|
||||||
@ -194,6 +194,9 @@ class Qdrant(VectorStore):
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Now generate the embeddings for all the texts
|
||||||
|
embeddings = embedding.embed_documents(texts)
|
||||||
|
|
||||||
client.upsert(
|
client.upsert(
|
||||||
collection_name=collection_name,
|
collection_name=collection_name,
|
||||||
points=rest.Batch(
|
points=rest.Batch(
|
||||||
|
Loading…
Reference in New Issue
Block a user