community: Azure Search Vector Store is missing Access Token Authentication (#24330)

Added Azure Search Access Token Authentication instead of API KEY auth.
Fixes Issue: https://github.com/langchain-ai/langchain/issues/24263
Dependencies: None
Twitter: @levalencia

@baskaryan

Could you please review? First time creating a PR that fixes some code.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Luis Valencia
2024-08-27 00:41:50 +02:00
committed by GitHub
parent 49b0bc7b5a
commit 99f9a664a5
4 changed files with 34 additions and 11 deletions

View File

@@ -13,6 +13,7 @@ model = os.getenv("OPENAI_EMBEDDINGS_ENGINE_DOC", "text-embedding-ada-002")
# Vector store settings
vector_store_address: str = os.getenv("AZURE_SEARCH_ENDPOINT", "")
vector_store_password: str = os.getenv("AZURE_SEARCH_ADMIN_KEY", "")
access_token: str = os.getenv("AZURE_SEARCH_ACCESS_TOKEN", "")
index_name: str = "embeddings-vector-store-test"
@@ -25,6 +26,7 @@ def similarity_search_test() -> None:
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
azure_ad_access_token=access_token,
index_name=index_name,
embedding_function=embeddings.embed_query,
)
@@ -68,6 +70,7 @@ def test_semantic_hybrid_search() -> None:
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
azure_ad_access_token=access_token,
index_name=index_name,
embedding_function=embeddings.embed_query,
semantic_configuration_name="default",